
Cloud Search Service

Best Practices

Issue 01

Date 2024-07-01

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.
Address: Huawei Cloud Data Center Jiaoxinggong Road

Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Contents

1 Cluster and Index Planning...1

2 Permission Configuration.. 6
2.1 Granting IAM Users the Permission to Create CSS Clusters...6
2.2 Creating an Elasticsearch User and Configuring Index Permissions... 18

3 Cluster Migration.. 27
3.1 Migration Solution Overview.. 27
3.2 Migration from Elasticsearch.. 29
3.2.1 Using Logstash to Perform Full Data Migration...29
3.2.2 Using Logstash to Perform Incremental Data Migration.. 45
3.2.3 Migrating Data Through Backup and Restoration (from CSS Elasticsearch)... 57
3.2.4 Migrating Data Through Backup and Restoration (from Third-Party Elasticsearch)................................ 60
3.3 Migration from Kafka/MQ... 63
3.4 Migration from a Database... 64

4 Cluster Access...66
4.1 Overview.. 66
4.2 Accessing an Elasticsearch Cluster.. 67
4.3 Accessing a Cluster Using cURL Commands... 68
4.4 Accessing a Cluster Using Java...69
4.4.1 Accessing a Cluster Through the Rest High Level Client... 70
4.4.2 Accessing a Cluster Through the Rest Low Level Client.. 79
4.4.3 Accessing the Cluster Through the Transport Client... 93
4.4.4 Using Spring Boot to Access a Cluster... 95
4.5 Accessing a Cluster Using Python...101
4.6 Using ES-Hadoop to Read and Write Data in Elasticsearch Through Hive..104
4.7 Accessing a Cluster Using Go... 110

5 Cluster Performance Tuning...114
5.1 Optimizing Write Performance.. 114
5.2 Optimizing Query Performance...117

6 Managing the Index Lifecycle.. 120
6.1 Configuring the Lifecycle to Automate Index Rollover... 120
6.2 Configuring the Lifecycle to Decouple Storage and Compute..123

Cloud Search Service
Best Practices Contents

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

7 Practices.. 127
7.1 Using CSS to Accelerate Database Query and Analysis.. 127
7.2 Using CSS to Build a Unified Log Management Platform... 132
7.3 Configuring Query Scoring in an Elasticsearch Cluster... 136

Cloud Search Service
Best Practices Contents

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

1 Cluster and Index Planning

In Cloud Search Service (CSS), you can select the cluster version, architecture,
storage type, number of cluster nodes, storage capacity, and number of index
shards. Configure them based on your service requirements for read and write
requests, data storage and computing, and search and analytics.

You can configure the following specifications of a CSS cluster:

● Cluster Version
● Cluster Architecture
● Storage Types
● Cluster Nodes
● Node Storage Capacity
● Number of Index Shards

Cluster Version
You are advised to select the Elasticsearch version used with CSS as follows:

● If you are using the CSS Elasticsearch cluster for the first time, select 7.10.2 or
7.6.2.

● If you want to migrate an existing Elasticsearch cluster to CSS, you are
advised to create an Elasticsearch cluster by choosing version 7.10.2 or 7.6.2 if
you need to modify the code of the migrated cluster. If you want to keep the
current version, create an Elasticsearch cluster that has the same or close
version as the existing cluster.

Cluster Architecture
CSS supports multiple architectures, such as read/write splitting, cold and hot
isolation, decoupled storage and computing, role separation, and cross-AZ
deployment.

Cloud Search Service
Best Practices 1 Cluster and Index Planning

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

Table 1-1 Applicable scenarios of different cluster architectures

Architect
ure

Scenario Benefits

Read/
Write
splitting

Production services involving many read operations
and only a few write operations. After data is
written, it does not need to be accessed within 10s.

High
concurrency,
low latency

Cold and
hot data
separation

Log services that have low requirements on cold
data query performance.

Low costs

Decouple
d storage
and
compute

Log services that have low requirements on cold
data query performance (10s+) and do not require
cold data update. This architecture can be used
together with the cold and hot data separation
architecture to build three levels of storage: hot,
warm, and cold.

Low costs

Separatio
n of roles

A cluster that is large, has a large number of
indexes, or is highly scalable.

High
availability

Cross-AZ
deployme
nt

Production services that have high requirements on
availability or use local disks.

High
availability

Storage Types
CSS supports cloud and local disks.

● Cloud disk types include computing-intensive (CPU:memory = 1:2), general
computing (CPU:memory = 1:4), and memory-optimized (CPU:memory = 1:8).

● Local disk types include disk-intensive (with HDDs attached) and ultra-high
I/O (with SSDs attached).

Table 1-2 Applicable scenarios of storage types

Storage
Type

Disk
Type

Scenario

Computin
g-
intensive

Cloud
drive

Recommended scenario: search from a small amount of
data (less than 100 GB on a single node)

General
computin
g

Cloud
drive

Common scenario: search and analysis when the data
volume on a single node is in the range 100 GB to 1,000
GB, for example, medium-scale e-commerce search,
social search, and log search

Cloud Search Service
Best Practices 1 Cluster and Index Planning

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

Storage
Type

Disk
Type

Scenario

Memory-
optimized

Cloud
drive

Common scenario: search and analysis when the data
volume of a single node is in the range 100 GB to 2,000
GB
Vector search: Large memory helps improve cluster
performance and stability.

Disk-
intensive

Local
disk

Logs: Cold data needs to be stored and updated, and the
requirements on cold data query performance is low.

Ultra-
high I/O -
Kunpeng

Local
disk

Large-scale logs: hot data storage

Ultra-
high I/O -
x86

Local
disk

Large-scale search and analysis: High computing or
disk I/O performance is required, such as public opinion
analysis, patent search, and database acceleration.

Cluster Nodes
After the architecture and storage type of a CSS cluster are selected, determine
the number of nodes in the cluster based on your performance requirements.

Table 1-3 Node quantity calculation methods

Type Performance Baseline Node Quantity
Calculation Method

Example

Write
node

● For a node with a
cloud disk, the write
performance baseline
of a single vCPU is 1
MB/s.

● For an ultra-high I/O
node, the write
performance baseline
of a single vCPU is 1.5
MB/s.

Number of write
nodes = Peak traffic/
Number of vCPUs on
a single node/Write
throughput of a
single vCPU x
Number of copies

If the peak write
rate is 100 MB/s
and a node has 16
vCPUs and 64 GB
memory, 12 nodes
(100/16/1 x 2) are
required.

Cloud Search Service
Best Practices 1 Cluster and Index Planning

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

Type Performance Baseline Node Quantity
Calculation Method

Example

Query
node

The performance of the
same node varies greatly
in different scenarios. It is
difficult to evaluate the
performance baseline of
a single node. The
average query response
time is used as the query
performance baseline for
calculation.

Number of query
nodes = QPS/
(Number of vCPUs on
a single node x 3/2/
Average query
response time per
second) x Number of
shards

If the query QPS is
1000, the average
query response
time is 100 ms,
three index shards
are planned, and a
node has 16
vCPUs and 64 GB
memory, about 12
nodes (1000/(16 x
3/2/0.1) x 3) are
required.

Numbe
r of
nodes

/ Number of nodes =
Number of write
nodes + Number of
query nodes

Number of nodes
= Number of write
nodes + Number
of query nodes =
24

NO TE

If two clusters can achieve the same performance, you are advised to select the one using
higher specifications and fewer nodes. For example, a cluster using 3 nodes with 32 vCPUs
and 64 GB memory achieves the same performance as the one using 12 nodes with 8
vCPUs and 16 GB memory, but the former runs more stable and can be more easily scaled.
For a high-specification cluster that reaches the performance bottleneck, you simply need
to scale it out (by adding nodes); whereas for a low-specification cluster, you need to scale
it up (by changing to higher specifications).

Node Storage Capacity

The disk space of each node in a CSS cluster is determined by multiple factors,
such as the data volume, number of copies (often set to 1), data bloat rate, and
disk space usage (often set to 70%). You can use the following formula to
calculate the storage capacity of a cluster:

Storage capacity = Source data x (1 + Number of copies) x 1.25 x (1 + Reserved
space) ≈ Source data x 2 x 1.25 x 1.3 = Source data x 3.25

Number of Index Shards

You are advised to plan the number of index shards in a CSS cluster based on the
following principles:

● The size of a single shard is in the range 10 GB to 50 GB.

● A cluster has fewer than 30,000 shards.

● It is recommended that 1 GB memory be used for 20 to 30 shards, and that a
single node have no more than 1,000 shards.

Cloud Search Service
Best Practices 1 Cluster and Index Planning

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

● For a single index, it is recommended that the number of index shards be the
same as or a multiple of the number of nodes.

Cloud Search Service
Best Practices 1 Cluster and Index Planning

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

2 Permission Configuration

2.1 Granting IAM Users the Permission to Create CSS
Clusters

To implement fine-grained permission management for CSS, you can use Identity
and Access Management (IAM) to create independent IAM users and assign
policies or roles to IAM user groups. The policies and roles can be used to control
access to CSS resources.

This section describes how to create an IAM user and add the IAM user to a user
group, so that the IAM user has the permission to create CSS clusters.

Step 1: Create a User Group and Assign Policy

Step 1 Use your Huawei ID to enable Huawei Cloud services, and then log in to Huawei
Cloud.

Cloud Search Service
Best Practices 2 Permission Configuration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

Figure 2-1 Logging in to Huawei Cloud

Step 2 Click Console in the upper right corner.

Figure 2-2 Accessing the console

Step 3 On the management console, hover the mouse pointer over the username in the
upper right corner, and choose Identity and Access Management from the drop-
down list.

Cloud Search Service
Best Practices 2 Permission Configuration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

Figure 2-3 Accessing the IAM console

Step 4 Log in to the Huawei Cloud console and choose Identity and Access
Management.

Step 5 On the IAM console, choose User Groups and click Create User Group.

Figure 2-4 Creating a user group

Figure 2-5 Creating a user group

Step 6 Enter Developers for Name, and click OK.

Cloud Search Service
Best Practices 2 Permission Configuration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

Figure 2-6 Setting the user group information

Figure 2-7 Setting the user group information

----End

Step 2: Grant Permissions to a User Group

Step 1 In the user group list, click Authorize in the Operation column of the newly
created user group.

Step 2 In the Select Policy/Role step, search for CSS FullAccess in the search box, select
it, and click Next.
● Generally, the permissions for creating a cluster include CSS FullAccess and

Elasticsearch Administrator. You can configure the permissions based on the
relationship between common operations and system permissions in Table
2-1. For more information, see Table 2-2.

● If users in the group need to view resource usage, attach the BSS
Administrator role to the group for the same project.

Cloud Search Service
Best Practices 2 Permission Configuration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

Table 2-1 Common operations supported by each system-defined policy

Operation CSS
FullAcces
s

CSS
ReadOnlyAcc
ess

Elasticsearch
Administrator

Remarks

Creating a
cluster

√ x √ -

Querying the
cluster list

√ √ √ -

Querying
cluster details

√ √ √ -

Deleting a
cluster

√ x √ -

Restarting a
cluster

√ x √ -

Expanding
cluster
capacity

√ x √ -

Adding
instances and
expanding
storage

√ x √ -

Querying tags
of a specified
cluster

√ √ √ -

Querying all
tags

√ √ √ -

Loading a
custom word
dictionary

√ x √ Depends on OBS
and IAM
permissions

Querying the
status of a
custom word
dictionary

√ √ √ -

Deleting a
custom word
dictionary

√ x √ -

Automatically
setting basic
configurations
of a cluster
snapshot

√ x √ Depends on OBS
and IAM
permissions

Cloud Search Service
Best Practices 2 Permission Configuration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

Operation CSS
FullAcces
s

CSS
ReadOnlyAcc
ess

Elasticsearch
Administrator

Remarks

Modifying
basic
configurations
of a cluster
snapshot

√ x √ Depends on OBS
and IAM
permissions

Setting the
automatic
snapshot
creation policy

√ x √ -

Querying the
automatic
snapshot
creation policy

√ √ √ -

Manually
creating a
snapshot

√ x √ -

Querying the
snapshot list

√ √ √ -

Restoring a
snapshot

√ x √ -

Deleting a
snapshot

√ x √ -

Disabling the
snapshot
function

√ x √ -

Modifying
specifications

√ x √ -

Scaling in
clusters

√ x √ -

Cloud Search Service
Best Practices 2 Permission Configuration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

Table 2-2 CSS system permissions

Role/Policy
Name

Type Role/Policy Description Dependencies

Elasticsearc
h
Administrat
or

System-
defined
role

Full permissions for CSS.
This role depends on the
Tenant Guest and Server
Administrator roles in the
same project.

● Tenant Guest: A
global role, which
must be assigned in
the global project.

● Server Administrator:
A project-level role,
which must be
assigned in the same
project

CSS
FullAccess

System
policy

Full CSS permissions
granted through policies.
Users with these
permissions can perform all
operations on CSS.

None

CSS
ReadOnlyAc
cess

System
policy

Read-only permissions for
CSS. Users with these
permissions can only view
CSS data.

None

Step 3 Select a scope.

Take the AP-Singapore region as an example. Set Scope to Region-specific
projects and select ap-southeast-3 [AP-Singapore].

Step 4 Click OK.

----End

Step 3: Create an IAM User and Add It to the User Group

Step 1 In the navigation pane, choose Users. Click Create User.

Step 2 Configure basic information. On the Create User page, configure User Details and
Access Type. To create more users, click Add User. A maximum of 10 users can be
created at a time.

Figure 2-8 Configuring user information

Cloud Search Service
Best Practices 2 Permission Configuration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

Figure 2-9 Configuring user information

NO TE

● Users can log in to the cloud platform using the username, email address,, email, or
mobile number.

● If users forget their password, they can reset it through email address or mobile number
verification. If no email addresses or mobile numbers have been bound to users, users
need to request the administrator to reset their passwords.

Table 2-3 User information

Parameter Description

Username Mandatory. Username that will be used to log in to HUAWEI
CLOUD, for example, James and Alice.

Email Address This parameter is mandatory if you choose Credential Type >
Password > Require password reset at first login. The email
address of an IAM user that can be used as a login credential.
After IAM users are created, they can also bind email addresses.

Mobile
Number

Optional. Mobile phone number of the IAM user to use as a
login credential. IAM users can bind mobile numbers by
themselves after being created.

Description Optional. Additional information about the IAM user.

Cloud Search Service
Best Practices 2 Permission Configuration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

Figure 2-10 Setting the access type

Figure 2-11 Setting the access type

Cloud Search Service
Best Practices 2 Permission Configuration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

● Programmatic access: Select this option to allow the user to access cloud
services using development tools, such as APIs, CLI, and SDKs. You can
generate an access key or set a password for the user.

● Management console access: Select this option to allow the user to access
cloud services using the management console. You can set or generate a
password for the user or request the user to set a password at first login.

NO TE

– If the user accesses cloud services only by using the management console,
select Management console access for Access Type and Password for Credential
Type.

– If the user accesses cloud services only through programmatic calls, select
Programmatic access for Access Type and Access key for Credential Type.

– If the user needs to use a password as the credential for programmatic access
to certain APIs, select Programmatic access for Access Type and Password for
Credential Type

– If the user needs to perform access key verification when using certain services in
the console, select Programmatic access and Management console access for
Access Type and Access key and Password for Credential Type. For example, the
user needs to perform access key verification when creating a data migration job in
the Cloud Data Migration (CDM) console.

Table 2-4 Setting the credential type and login protection

Credential Type
and Login
Protection

Description

Access Key After creating the user, you can download the access
key (AK/SK) generated for the user.
Each user can have a maximum of two access keys.

Pass
wor
d

Custom
images

Set a password for the user and determine whether to
require the user to reset the password at first login.
If you are the user, select this option and set a
password for login. You do not need to select Require
password reset at first login.

Automatic
ally
generated

The system automatically generates a login password
for the user. After the user is created, download the
EXCEL password file and provide the password to the
user. The user can then use this password for login.
This option is available only when you create a
single user.

Set by
user

A one-time login URL will be emailed to the user. The
user can click the link to log in to the console and set a
password.
If you do not use the IAM user, select this option and
enter the email address and mobile number of the IAM
user. The user can then set a password by clicking the
one-time login URL sent over email. The login URL is
valid for seven days.

Cloud Search Service
Best Practices 2 Permission Configuration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html
https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html

Credential Type
and Login
Protection

Description

Logi
n
Prot
ecti
on

Enable
(Recomme
nded)

If login protection is enabled, the user will need to
enter a verification code in addition to the username
and password during login. Enable this function for
account security.
You can select SMS, email, or virtual MFA device for
verification during login.

Disable To enable login protection for an IAM user after
creation, see Modifying IAM User Information.

Step 3 Click Next and add the user to the user group created in Step 1: Create a User
Group and Assign Policy.

The user will inherit the permissions assigned to the user groups to which the user
belongs.

NO TE

The default user group admin has the administrator permissions and the permissions
required to use all cloud resources.

Step 4 Click Create. If you have specified the access type as Programmatic access and
selected Access key for Credential Type (see Table 2-4), you can download the
access keys on the Finish page.

Figure 2-12 User created successfully

Cloud Search Service
Best Practices 2 Permission Configuration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_02_0002.html

Figure 2-13 User created successfully

----End

Step 4: Log In as an IAM User and Verify Permissions

Step 1 Click IAM UserIAM User Login on the login page, and then enter your Tenant
name or HUAWEI CLOUD account name, IAM user name or email address, and
IAM user password.

Figure 2-14 IAM user login

● Tenant name or Huawei Cloud account name: the name of the account
that was used to create the IAM user.

● IAM user name or email address: the username (for example, James) or
email address of the IAM user. IAM users can obtain their username and
password from the administrator.

● IAM user password: the password of the IAM user (not the password of the
account)

Step 2 Click Log In.

Step 3 Click Service List and choose Cloud Search Service.

Cloud Search Service
Best Practices 2 Permission Configuration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

Step 4 In the upper right corner of the Dashboard page, click Create Cluster. Create a
cluster by following the steps provided in Creating a Cluster. If the cluster can be
created, the permissions have taken effect.

----End

2.2 Creating an Elasticsearch User and Configuring
Index Permissions

You can use the Role-Based Access Control (RBAC) model in an Elasticsearch
security cluster of version 7.6.2.

Context

CSS uses the opendistro_security plug-in to provide security cluster capabilities.
The opendistro_security plug-in is built based on the RBAC model. RBAC involves
three core concepts: user, action, and role. RBAC simplifies the relationship
between users and actions, simplifies permission management, and facilitates
permission expansion and maintenance. The following figure shows the
relationship between the three.

Figure 2-15 User, action, and role

In addition to the RBAC model, Elasticsearch has an important concept called
tenant. RBAC is used to manage user authorization, and tenants are used for
information sharing across tenants. In a tenant space, IAM users can share
information such as dashboard data and index patterns.

By default, users can view only the index patterns and dashboard information in
their own private tenant spaces. Create a user named test. By default,
a .kibana_xxx_test index is created to store the content of the private space of
test. Similarly, the private tenant space of the admin account is stored
in .kibana_xxx_admin. To share the index pattern of the current tenant or another
tenant on the dashboard, you can create a global tenant space. Other users can
switch to the global tenant space to access shared data.

Creating a User and Assigning Permissions

Step 1 Use Kibana to create a user.

1. Log in to the CSS management console.
2. Choose Clusters in the navigation pane. On the Clusters page, locate the

target cluster and click Access Kibana in the Operation column.
Enter the administrator username and password to log in to Kibana.
– Username: admin (default administrator account name)

Cloud Search Service
Best Practices 2 Permission Configuration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

https://support.huaweicloud.com/intl/en-us/usermanual-css/css_01_0011.html

– Password: Enter the administrator password you set when creating the
cluster in security mode.

Figure 2-16 Login page

3. Click the Security icon on the Kibana operation page.

Figure 2-17 Security page

4. On the Security page, choose Authentication Backends > Internal Users
Database.

Cloud Search Service
Best Practices 2 Permission Configuration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

Figure 2-18 Creating a user

5. On the Internal Users Database page, select +.

6. On the user creation page, set the username and password, and click Submit.
The username test is used as an example.

Figure 2-19 Adding user information

The user will be displayed in the user list.

Step 2 Create a role and grant permissions to the role.

1. On the Security page, click Roles.

Cloud Search Service
Best Practices 2 Permission Configuration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

Figure 2-20 Open Distro Security Roles page

2. On the Open Distro Security Roles page, click +.
3. Enter a role name on the Overview page.

Figure 2-21 Overview page

4. On the Cluster Permissions tab, configure CSS cluster permissions.

Cloud Search Service
Best Practices 2 Permission Configuration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

Figure 2-22 Cluster Permissions tab

5. On the Index Permissions tab, click Add index permissions.

Figure 2-23 Index Permissions tab

– Index patterns: Set this parameter to the name of the index whose
permission needs to be configured. For example, my_store.

– Configure Permissions: Action Groups as required, for example, select
the read-only permission Search.

6. On the Tenant Permissions page, set role permissions.
After the configuration is complete, the role will be displayed.

Step 3 Map a user with a role to bind them.

1. On the Security page, click Role Mappings.

Cloud Search Service
Best Practices 2 Permission Configuration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

Figure 2-24 Role Mappings page

2. Click + to add the mapping between users and roles.

Figure 2-25 Adding user-role mappings

3. Click Submit.

4. Verify that the configuration takes effect in Kibana.

----End

Creating a User Having the Kibana Access Permission

Step 1 Create a user named test. For details, see Step 1.

Step 2 Map a user with a role to bind them.

1. On the Security page, click Role Mappings.

2. On the Role Mappings page, click kibana_user.

Cloud Search Service
Best Practices 2 Permission Configuration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

Figure 2-26 kibana_user role

The kibana_user role has the permission for the .kibana* index. The
dashboards and index patterns operated on the Kibana page are saved
in .kibana*. The test user is mapped to kibana_user, indicating that the test
user has the Kibana permission.

3. Click + to add a user-role mapping.
4. In the Users area, select the test user.
5. Click Submit.

After the configuration is complete, switch to the test user to check whether
the permission takes effect.

----End

Granting a New User the Permission for the index*
The newly created test user can access Kibana and have permissions for the index
patterns, Discover, and Dashboards of Kibana. However, this does not mean that
the test user can view any .kibana space. By default, the test user can view only
the data of its private tenant space and the global tenant space. To access other
tenant spaces, you need to define other tenant permissions in the role.

Step 1 Select Roles from the Security drop-down list box.

Step 2 On the Open Distro Security Roles page, click + to add role permissions.

Step 3 On the Overview tab, set the role name to Role1.

Step 4 On the Index Permissions tab, click Add index permissions.

Cloud Search Service
Best Practices 2 Permission Configuration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

Figure 2-27 Configuring permissions

● Index patterns: Enter index*.
● Permissions: Action Groups: Select permissions as needed. For a query

permission, select read. For a write permission, select write. For details about
the bottom-layer actions corresponding to operations, see the description of
the permission module on the Kibana page. Take read as an example. Select
indices:data/read* and indices:admin/mappings/fields/get*. indices:data/
read* contains all permissions in indices:data/read/, including indices:data/
read/get, indices:data/read/mget, and indices:data/read/search.

Step 5 Complete the settings and check Role1.

Step 6 On the Security page, click Role Mappings.

Step 7 On the Role Mappings page, click + to add the mapping between the test user
and the Role1 role.

Step 8 Click Submit.

After the configuration is complete, the test user has the read permission on
index*.

----End

Cloud Search Service
Best Practices 2 Permission Configuration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

Sharing the Index Pattern and Dashboard Information of the admin Account
with the test User

Generally, a new user does not have the permission to create an index pattern,
and cannot manage data due to service relationship settings. In this case, the
admin account creates an index pattern, manages dashboard and other report
information, and shares the information with the test user.

Perform the following operations:

1. Create an index pattern and a dashboard in global_tenant as the admin user.
2. All tenants can directly access global_tenant. However, if there are too many

users from different departments, the access performance may be poor. You
can perform the following steps to improve performance:

a. On the Security page, click Tenants. Create a tenant by department as
the admin user, for example, test_tenant.

Figure 2-28 Creating a tenant

b. Switch to the test_tenant department.

Figure 2-29 Switching to test_tenant

c. Under test_tenant, create index patterns and dashboards as needed.
d. On the Security page, click Roles. Click Role1 corresponding to the test

user. Assign test_tenant to Role1 on the Tenant Permissions tab.
Save the settings and switch to the test user. The test user can access the
content in the test_tenant space.

Cloud Search Service
Best Practices 2 Permission Configuration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

3 Cluster Migration

3.1 Migration Solution Overview
You can migrate data to a Huawei Cloud Elasticsearch cluster from another
Huawei Cloud Elasticsearch cluster, a user-built Elasticsearch cluster, or a third-
party Elasticsearch cluster. This section describes the solutions for data migration
from different clusters.

Scenarios
The migration solution varies depending on the data source.

● Migration from an Elasticsearch cluster
You can use Logstash, CDM, OBS backup and restoration, ESM, or cross-
cluster replication plug-ins to migrate data in an Elasticsearch cluster.
– Logstash: CSS provides Logstash to migrate data from different data

sources and Elasticsearch, and clean and process data. For details, see
Using Logstash to Perform Full Data Migration.

– CDM: a cloud migration tool provided by Huawei Cloud to implement
cluster migration between different cloud services. For details, see
Migrating the Entire Elasticsearch Database to CSS.

– Backup and restoration: Elasticsearch provides backup and restoration
capabilities. You can back up the data of a cluster to OBS, and restore the
data to another cluster. For details about how to migrate data between
CSS Elasticsearch clusters, see Migrating Data Through Backup and
Restoration (from CSS Elasticsearch). For details about how to migrate
data from a user-built Elasticsearch cluster or a third-party Elasticsearch
cluster to a CSS Elasticsearch cluster, see Migrating Data Through
Backup and Restoration (from Third-Party Elasticsearch).

● Migration from a Database

Solutions
CSS supports migration by backup and restoration, by using the Reindex API or
Logstash+ESM, or by data source synchronization. For details, see Table 3-1.

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

https://support.huaweicloud.com/intl/en-us/usermanual-cdm/cdm_01_0089.html

Data source synchronization has fewer constraints and higher performance than
the other three solutions. Data source synchronization allows cutover anytime
after the synchronization completed, which is more convenient and flexible.

Table 3-1 Migration solutions

Solution Description Constraint Performance

Backup
and
restorati
on

Prepare shared storage
that supports the S3
protocol, for example, an
OBS bucket. Create a
snapshot to back up the
data of the source
Elasticsearch cluster,
synchronize the snapshot
to the target cluster, and
restore data to the target
cluster.

● Target
Elasticsearch
version ≥ Source
Elasticsearch
version.

● Number of
candidate master
nodes of the
target
Elasticsearch
cluster > Half of
the number of
candidate master
nodes of the
source
Elasticsearch
cluster.

● Incremental data
synchronization is
not supported. You
need to stop
update before
backing up or
restoring data.

The data
migration rate is
configurable.
Ideally, the data
migration rate is
the same as the
file copy rate.

Reindex
API

Configure mutual trust
between the source and
target Elasticsearch
clusters, and then
migrate data using the
Reindex API.

● _source must be
enabled for
indexes.

● Real-time
synchronization of
incremental data is
not supported. You
need to stop the
update and then
call the API.

Batch read and
write are
supported, but
concurrent
slicing
synchronization
is not supported.

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

Solution Description Constraint Performance

Logstash
+ESM

Apply for an ECS, deploy
and configure Logstash
on it, and then start data
migration.

● _source must be
enabled for
indexes.

● Real-time
synchronization of
incremental data is
not supported. You
need to stop the
update and then
start Logstash.

Batch read and
write are
supported, and
concurrent
slicing
synchronization
is supported.

Data
source
synchron
ization

Inventory data is
migrated using Logstash,
and incremental data is
automatically
synchronized through
traffic replication or data
links.

None The inventory
migration rate is
the same as that
of Logstash. An
existing tool is
reused for
incremental
migration.

3.2 Migration from Elasticsearch

3.2.1 Using Logstash to Perform Full Data Migration
Logstash supports full data migration and incremental data migration. You can
select full migration for the first time, and incremental migration for subsequent
data migration. This section describes how to use Logstash of CSS to fully migrate
cluster data.

Prepare for the migration by referring to Restrictions and Preparations. The
procedure is as follows:

● Step 1: Creating a Logstash Cluster
● Step 2: Verifying Cluster Connectivity
● Step 3: Configuring a Logstash Full Data Migration Task
● Step 4: Performing a Full Data Migration
● Step 5: Deleting the Logstash Cluster

Restrictions
● Logstash version restrictions:

CSS supports clusters of versions 5.5.1, 6.3.2, 6.5.4, 7.1.1, 7.6.2, and 7.10.2.
Ensure that the major versions of the clusters whose data you want to
migrate are the same.
If the Elasticsearch cluster version is 5.x, select Logstash 5.6.16. If the
Elasticsearch cluster version is 7.x, select Logstash 7.10.0.

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

● Do not modify indexes during cluster migration. Otherwise, the original data
will be inconsistent with the migrated data.

● If the index size is less than 100 GB, separate index analysis is not required.

Preparations
● Create a VM for data migration.

Create a VM to migrate the metadata of the source cluster.

a. Create a Linux ECS with 2 vCPUs and 4 GB memory.
b. Run the curl http:// {IP_address}:{port} command to test the

connectivity between the VM and the source cluster and between the VM
and the destination cluster.
IP_address indicates the access address of the source and destination
clusters. Enter the actual port number of the cluster. The default port is
9200.

NO TE

The following example applies only to non-security clusters.
curl http://10.234.73.128:9200
{
 "name" : "voc_es_cluster_new-ess-esn-1-1",
 "cluster_name" : "voc_es_cluster_new",
 "cluster_uuid" : "1VbP7-39QNOx_R-llXKKtA",
 "version" : {
 "number" : "6.5.4",
 "build_flavor" : "default",
 "build_type" : "tar",
 "build_hash" : "d2ef93d",
 "build_date" : "2018-12-17T21:17:40.758843Z",
 "build_snapshot" : false,
 "lucene_version" : "7.5.0",
 "minimum_wire_compatibility_version" : "5.6.0",
 "minimum_index_compatibility_version" : "5.0.0"
 },
 "Tagline" : "You Know, for Search"
}

● Prepare the tools and software.
The installation method is determined by whether the VM can be connected
to the Internet. If VM can be connected to the Internet, use yum and pip to
install the software. If VM cannot be connected to the Internet, download the
installation package to the VM and run the installation commands.

Table 3-2 Tools and software

Type Purpose How to Obtain

Python2 Used to execute data
migration scripts.

Python2. Select Python 2.7.18.

WinSCP Cross-platform file
transfer tool. Upload
scripts to Linux.

WinSCP

Online installation procedure:

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

https://www.python.org/downloads/release/python-2718/
https://winscp.net/

a. Run yum install python2 to install python2.
[root@ecs opt]# yum install python2

b. Run yum install python-pip to install pip.
[root@ecs opt]# yum install python-pip

c. Run pip install pyyaml to install the YAML dependency.
d. Run pip install requests to install the requests dependency.

Offline installation procedure:

a. Download the python2 installation package from https://
www.python.org/downloads/release/python-2718/. Download and
install the source code.

Figure 3-1 Downloading the python2 package

b. Use WinSCP to upload the Python installation package to the opt
directory and install Python.
Decompress the Python package.
[root@ecs-52bc opt]# tar -xvf Python-2.7.18.tgz
Python-2.7.18/Modules/zlib/crc32.c
Python-2.7.18/Modules/zlib/gzlib.c
Python-2.7.18/Modules/zlib/inffast.c
Python-2.7.18/Modules/zlib/example.c
Python-2.7.18/Modules/python.c
Python-2.7.18/Modules/nismodule.c
Python-2.7.18/Modules/Setup.config.in
...
After the decompression, go to the directory.
[root@ecs-52bc opt]# cd Python-2.7.18
Check the file configuration installation path.
[root@ecs-52bc Python-2.7.18]# ./configure --prefix=/usr/local/python2
...
checking for build directories... checking for --with-computed-gotos... no value specified
checking whether gcc -pthread supports computed gotos... yes
done
checking for ensurepip... no
configure: creating ./config.status
config.status: creating Makefile.pre
config.status: creating Modules/Setup.config
config.status: creating Misc/python.pc
config.status: creating Modules/ld_so_aix
config.status: creating pyconfig.h
creating Modules/Setup
creating Modules/Setup.local
creating Makefile
Compile Python.
[root@ecs-52bc Python-2.7.18]# make
Install Python.
[root@ecs-52bc Python-2.7.18]# make install

c. Check the Python installation result.
Check the Python version.
[root@ecs-52bc Python-2.7.18]# python --version

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

https://www.python.org/downloads/release/python-2718/
https://www.python.org/downloads/release/python-2718/

Python 2.7.5
Check the pip version.
[root@ecs-52bc Python-2.7.18]# pip --version
pip 7.1.2 from /usr/lib/python2.7/site-packages/pip-7.1.2-py2.7.egg (python 2.7)
[root@ecs-52bc Python-2.7.18]#

● Prepare the execution script.

a. Run the vi migrateConfig.yaml command to add configuration files.
es_cluster_new:
Cluster name
 clustername: es_cluster_new
 # Address of the source Elasticsearch cluster, with http:// at the beginning
 src_ip: http://x.x.x.x:9200
 # If there is no username, set the password to "".
 src_username: ""
 src_password: ""
 # Address of the target Elasticsearch cluster, with http:// at the beginning
 dest_ip: http://x.x.x.x:9200
 # If there is no username, set the password to "".
 dest_username: ""
 dest_password: ""
 #This parameter is optional. The default value is false. It is used by migrateMapping.py.
 # Indicates whether to process only the mapping address indexes in the file.
 # If this parameter is set to true, only the indexes in the following mappings are obtained and
created in the target.
 # If this parameter is set to false, all the indexes of the source cluster are obtained, excluding
the following: .kibana, .*
 # Match the index names with the following mappings. If an index name matches a mapping,
use the value of the mapping as the index name in the target.
 # If no match is found, the original index name in the source is used.
 only_mapping: false
 # Index to be migrated. key indicates the index name in the source, and value indicates the
index name in the target.
 mapping:
 test_index_1: test_index_1

 # This parameter is optional. The default value is false. It is used by checkIndices.py.
 # If this parameter is set to false, all indexes and the number of documents are compared. If
this parameter is set to true, only the number of indexes is compared.
 only_compare_index: false

Configuration file parameters

Table 3-3 Configuration file description

Configuration Description

clustername Cluster name

src_ip IP address for accessing the source cluster.
Only one IP address is required. The
default port number is 9200. If the port
number for accessing the cluster is not
9200, use the actual port number.

src_username Username for accessing the source cluster.
If this parameter is not required, set it to
"".

src_password Password for accessing the source cluster.
If this parameter is not required, set it to
"".

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

Configuration Description

dest_ip IP address for accessing the target cluster.
Only one IP address is required. The
default port number is 9200. If the port
number for accessing the cluster is not
9200, use the actual port number.

dest_username Username for accessing the target cluster.
If this parameter is not required, set it to
"".

dest_password Password for accessing the target cluster.
If this parameter is not required, set it to
"".

b. Run the vi migrateTemplate.py command. Copy the following script to

generate the index structure migration script:
-*- coding:UTF-8 -*-
import sys
import yaml
import requests
import json
import os

def printDividingLine():
 print("<===>")

def loadConfig(argv):
 if argv is None or len(argv) != 2:
 config_yaml = "migrateConfig.yaml"
 else:
 config_yaml = argv[1]
 config_file = open(config_yaml)
 # config = yaml.load(config_file, Loader=yaml.FullLoader)
 return yaml.load(config_file)

def put_template_to_target(url, template, cluster, template_name, dest_auth=None):
 headers = {'Content-Type': 'application/json'}
 create_resp = requests.put(url, headers=headers, data=json.dumps(template),
auth=dest_auth, verify=False)
 if not os.path.exists("templateLogs"):
 os.makedirs("templateLogs")
 if create_resp.status_code != 200:
 print(
 "create template " + url + " failed with response: " + str(
 create_resp) + ", source template is " + template_name)
 print(create_resp.text)
 filename = "templateLogs/" + str(cluster) + "#" + template_name
 with open(filename + ".json", "w") as f:
 json.dump(template, f)
 return False
 else:
 return True

def main(argv):
 requests.packages.urllib3.disable_warnings()
 print("begin to migration template!")
 config = loadConfig(argv)
 src_clusters = config.keys()

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

 print("process cluster name:")
 for name in src_clusters:
 print(name)
 print("cluster total number:" + str(src_clusters.__len__()))

 for name, value in config.items():
 printDividingLine()
 source_user = value["src_username"]
 source_passwd = value["src_password"]
 source_auth = None
 if source_user != "":
 source_auth = (source_user, source_passwd)
 dest_user = value["dest_username"]
 dest_passwd = value["dest_password"]
 dest_auth = None
 if dest_user != "":
 dest_auth = (dest_user, dest_passwd)

 print("start to process cluster name:" + name)
 source_url = value["src_ip"] + "/_template"

 response = requests.get(source_url, auth=source_auth, verify=False)
 if response.status_code != 200:
 print("*** get all template failed. resp statusCode:" + str(
 response.status_code) + " response is " + response.text)
 continue
 all_template = response.json()
 migrate_itemplate = []

 for template in all_template.keys():
 if template.startswith(".") or template == "logstash":
 continue
 if "index_patterns" in all_template[template]:
 for t in all_template[template]["index_patterns"]:
 # if "kibana" in template:
 if t.startswith("."):
 continue
 migrate_itemplate.append(template)

 for template in migrate_itemplate:
 dest_index_url = value["dest_ip"] + "/_template/" + template
 result = put_template_to_target(dest_index_url, all_template[template], name,
template, dest_auth)
 if result is True:
 print('[success] delete success, cluster: %-10s, template %-10s ' % (str(name),
str(template)))
 else:
 print('[failure] delete failure, cluster: %-10s, template %-10s ' % (str(name),
str(template)))

if __name__ == '__main__':
 main(sys.argv)

c. Run the vi migrateMapping.py command. Copy the following script to
generate the index structure migration script:
-*- coding:UTF-8 -*-
import sys
import yaml
import requests
import re
import json
import os

def printDividingLine():
 print("<===>")

def loadConfig(argv):

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

 if argv is None or len(argv) != 2:
 config_yaml = "migrateConfig.yaml"
 else:
 config_yaml = argv[1]
 config_file = open(config_yaml)
 # config = yaml.load(config_file, Loader=yaml.FullLoader)
 return yaml.load(config_file)

def get_cluster_version(url, auth=None):
 response = requests.get(url, auth=auth)
 if response.status_code != 200:
 print("*** get ElasticSearch message failed. resp statusCode:" + str(
 response.status_code) + " response is " + response.text)
 return False
 cluster = response.json()
 version = cluster["version"]["number"]

 return True

def process_mapping(index_mapping, dest_index):
 # remove unnecessary keys
 del index_mapping["settings"]["index"]["provided_name"]
 del index_mapping["settings"]["index"]["uuid"]
 del index_mapping["settings"]["index"]["creation_date"]
 del index_mapping["settings"]["index"]["version"]

 if "lifecycle" in index_mapping["settings"]["index"]:
 del index_mapping["settings"]["index"]["lifecycle"]

 # check alias
 aliases = index_mapping["aliases"]
 for alias in list(aliases.keys()):
 if alias == dest_index:
 print(
 "source index " + dest_index + " alias " + alias + " is the same as dest_index name,
will remove this alias.")
 del index_mapping["aliases"][alias]
 # if index_mapping["settings"]["index"].has_key("lifecycle"):
 if "lifecycle" in index_mapping["settings"]["index"]:
 lifecycle = index_mapping["settings"]["index"]["lifecycle"]
 opendistro = {"opendistro": {"index_state_management":
 {"policy_id": lifecycle["name"],
 "rollover_alias": lifecycle["rollover_alias"]}}}
 index_mapping["settings"].update(opendistro)
 # index_mapping["settings"]["opendistro"]["index_state_management"]["rollover_alias"] =
lifecycle["rollover_alias"]
 del index_mapping["settings"]["index"]["lifecycle"]

 # replace synonyms_path
 if "analysis" in index_mapping["settings"]["index"]:
 analysis = index_mapping["settings"]["index"]["analysis"]
 if "filter" in analysis:
 filter = analysis["filter"]
 if "my_synonym_filter" in filter:
 my_synonym_filter = filter["my_synonym_filter"]
 if "synonyms_path" in my_synonym_filter:
 index_mapping["settings"]["index"]["analysis"]["filter"]["my_synonym_filter"][
 "synonyms_path"] = "/rds/datastore/elasticsearch/v7.10.2/package/
elasticsearch-7.10.2/plugins/analysis-dynamic-synonym/config/synonyms.txt"
 return index_mapping

def getAlias(source, source_auth):
 # get all indices
 response = requests.get(source + "/_alias", auth=source_auth)
 if response.status_code != 200:
 print("*** get all index failed. resp statusCode:" + str(

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

 response.status_code) + " response is " + response.text)
 exit()

 all_index = response.json()
 system_index = []
 create_index = []
 for index in list(all_index.keys()):
 if (index.startswith(".")):
 system_index.append(index)
 else:
 create_index.append(index)

 return system_index, create_index

def put_mapping_to_target(url, mapping, cluster, source_index, dest_auth=None):
 headers = {'Content-Type': 'application/json'}
 create_resp = requests.put(url, headers=headers, data=json.dumps(mapping),
auth=dest_auth, verify=False)
 if not os.path.exists("mappingLogs"):
 os.makedirs("mappingLogs")
 if create_resp.status_code != 200:
 print(
 "create index " + url + " failed with response: " + str(create_resp) +
 ", source index is " + str(source_index))
 print(create_resp.text)
 filename = "mappingLogs/" + str(cluster) + "#" + str(source_index)
 with open(filename + ".json", "w") as f:
 json.dump(mapping, f)
 return False
 else:
 return True

def main(argv):
 requests.packages.urllib3.disable_warnings()
 print("begin to migrate index mapping!")
 config = loadConfig(argv)
 src_clusters = config.keys()

 print("begin to process cluster name :")
 for name in src_clusters:
 print(name)
 print("cluster count:" + str(src_clusters.__len__()))

 for name, value in config.items():
 printDividingLine()
 source = value["src_ip"]
 source_user = value["src_username"]
 source_passwd = value["src_password"]
 source_auth = None
 if source_user != "":
 source_auth = (source_user, source_passwd)
 dest = value["dest_ip"]
 dest_user = value["dest_username"]
 dest_passwd = value["dest_password"]
 dest_auth = None
 if dest_user != "":
 dest_auth = (dest_user, dest_passwd)

 print("start to process cluster: " + name)
 # only deal with mapping list
 if 'only_mapping' in value and value["only_mapping"]:
 for source_index, dest_index in value["mapping"].iteritems():
 print("start to process source index" + source_index + ", target index: " + dest_index)
 source_url = source + "/" + source_index
 response = requests.get(source_url, auth=source_auth)
 if response.status_code != 200:
 print("*** get ElasticSearch message failed. resp statusCode:" + str(

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

 response.status_code) + " response is " + response.text)
 continue
 mapping = response.json()
 index_mapping = process_mapping(mapping[source_index], dest_index)
 dest_url = dest + "/" + dest_index
 result = put_mapping_to_target(dest_url, index_mapping, name, source_index,
dest_auth)
 if result is False:
 print("cluster name:" + name + ", " + source_index + ":failure")
 continue
 print("cluster name:" + name + ", " + source_index + ":success")
 else:
 # get all indices
 system_index, create_index = getAlias(source, source_auth)
 success_index = 0
 for index in create_index:
 source_url = source + "/" + index
 index_response = requests.get(source_url, auth=source_auth)
 if index_response.status_code != 200:
 print("*** get ElasticSearch message failed. resp statusCode:" + str(
 index_response.status_code) + " response is " + index_response.text)
 continue
 mapping = index_response.json()

 dest_index = index
 if 'mapping' in value:
 if index in value["mapping"].keys():
 dest_index = value["mapping"][index]
 index_mapping = process_mapping(mapping[index], dest_index)

 dest_url = dest + "/" + dest_index
 result = put_mapping_to_target(dest_url, index_mapping, name, index, dest_auth)
 if result is False:
 print("[failure]: migrate mapping cluster name: " + name + ", " + index)
 continue
 print("[success]: migrate mapping cluster name: " + name + ", " + index)
 success_index = success_index + 1
 print("create index mapping success total: " + str(success_index))

if __name__ == '__main__':
 main(sys.argv)

d. Run the vi checkIndices.py command. Copy the following script to
generate the index data comparison script:
-*- coding:UTF-8 -*-
import sys
import yaml
import requests
import re
import json
import os

def printDividingLine():
 print("<===>")

def get_cluster_version(url, auth=None):
 response = requests.get(url, auth=auth)
 if response.status_code != 200:
 print("*** get ElasticSearch message failed. resp statusCode:" + str(
 response.status_code) + " response is " + response.text)
 return False
 cluster = response.json()
 version = cluster["version"]["number"]
 return True

get all indices

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

def get_indices(url, source_auth):
 response = requests.get(url + "/_alias", auth=source_auth)
 if response.status_code != 200:
 print("*** get all index failed. resp statusCode:" + str(
 response.status_code) + " response is " + response.text)
 exit()
 all_index = response.json()
 system_index = []
 create_index = []
 for index in list(all_index.keys()):
 if (index.startswith(".")):
 system_index.append(index)
 else:
 create_index.append(index)
 return create_index

def get_mapping(url, _auth, index):
 source_url = url + "/" + index
 index_response = requests.get(source_url, auth=_auth)
 if index_response.status_code != 200:
 print("*** get ElasticSearch message failed. resp statusCode:" + str(
 index_response.status_code) + " response is " + index_response.text)
 return "[failure] --- index is not exist in destination es. ---"
 mapping = index_response.json()
 return mapping

def get_index_total(url, index, es_auth):
 stats_url = url + "/" + index + "/_stats"
 index_response = requests.get(stats_url, auth=es_auth, verify=False)
 if index_response.status_code != 200:
 print("*** get ElasticSearch stats message failed. resp statusCode:" + str(
 index_response.status_code) + " response is " + index_response.text)
 return 0
 return index_response.json()

def get_indices_stats(url, es_auth):
 endpoint = url + "/_cat/indices"
 indicesResult = requests.get(endpoint, es_auth)
 indicesList = indicesResult.split("\n")
 indexList = []
 for indices in indicesList:
 indexList.append(indices.split()[2])
 return indexList

def loadConfig(argv):
 if argv is None or len(argv) != 2:
 config_yaml = "migrateConfig.yaml"
 else:
 config_yaml = argv[1]
 config_file = open(config_yaml)
 # python3
 # return yaml.load(config_file, Loader=yaml.FullLoader)
 return yaml.load(config_file)

def main(argv):
 requests.packages.urllib3.disable_warnings()
 print("begin to migrate index mapping!")
 config = loadConfig(argv)
 src_clusters = config.keys()

 print("begin to process cluster name :")
 for name in src_clusters:
 print(name)
 print("cluster count:" + str(src_clusters.__len__()))

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

 for name, value in config.items():
 printDividingLine()
 source = value["src_ip"]
 source_user = value["src_username"]
 source_passwd = value["src_password"]
 source_auth = None
 if source_user != "":
 source_auth = (source_user, source_passwd)
 dest = value["dest_ip"]
 dest_user = value["dest_username"]
 dest_passwd = value["dest_password"]
 dest_auth = None
 if dest_user != "":
 dest_auth = (dest_user, dest_passwd)
 cluster_name = name
 if "clustername" in value:
 cluster_name = value["clustername"]

 print("start to process cluster :" + cluster_name)
 # get all indices
 all_source_index = get_indices(source, source_auth)
 all_dest_index = get_indices(dest, dest_auth)

 if not os.path.exists("mappingLogs"):
 os.makedirs("mappingLogs")
 filename = "mappingLogs/" + str(cluster_name) + "#indices_stats"
 with open(filename + ".json", "w") as f:
 json.dump("cluster name: " + cluster_name, f)
 f.write("\n")
 json.dump("source indices: ", f)
 f.write("\n")
 json.dump(all_source_index, f, indent=4)
 f.write("\n")
 json.dump("destination indices : ", f)
 f.write("\n")
 json.dump(all_dest_index, f, indent=4)
 f.write("\n")

 print("source indices total : " + str(all_source_index.__len__()))
 print("destination index total : " + str(all_dest_index.__len__()))

 filename_src = "mappingLogs/" + str(cluster_name) + "#indices_source_mapping"
 filename_dest = "mappingLogs/" + str(cluster_name) + "#indices_dest_mapping"
 with open(filename_src + ".json", "a") as f_src:
 json.dump("cluster name: " + cluster_name, f_src)
 f_src.write("\n")
 with open(filename_dest + ".json", "a") as f_dest:
 json.dump("cluster name: " + cluster_name, f_dest)
 f_dest.write("\n")
 for index in all_source_index:
 mapping = get_mapping(source, source_auth, index)
 with open(filename + ".json", "a") as f_src:
 json.dump("========================", f_src)
 f_src.write("\n")
 json.dump(mapping, f_src, indent=4)
 f_src.write("\n")
 with open(filename_src + ".json", "a") as f_src:
 json.dump("========================", f_src)
 f_src.write("\n")
 json.dump(mapping, f_src, indent=4)
 f_src.write("\n")

 mapping = get_mapping(dest, dest_auth, index)
 with open(filename + ".json", "a") as f_dest:
 json.dump("========================", f_dest)
 f_dest.write("\n")
 json.dump(mapping, f_dest, indent=4)
 f_dest.write("\n")

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

 with open(filename_dest + ".json", "a") as f_src:
 json.dump("========================", f_src)
 f_src.write("\n")
 json.dump(mapping, f_src, indent=4)
 f_src.write("\n")

 print("source indices write file success, file: " + filename_src)
 print("destination indices write file success, file: " + filename_dest)

 if "only_compare_index" in value and value["only_compare_index"]:
 print("[success] only compare mapping, not compare index count.")
 continue

 for index in all_source_index:
 index_total = get_index_total(value["src_ip"], index, source_auth)
 src_total = index_total["_all"]["primaries"]["docs"]["count"]
 src_size = int(index_total["_all"]["primaries"]["store"]["size_in_bytes"]) / 1024 / 1024
 dest_index = get_index_total(value["dest_ip"], index, dest_auth)
 if dest_index is 0:
 print('[failure] not found, index: %-20s, source total: %-10s size %6sM'
 % (str(index), str(src_total), src_size))
 continue
 dest_total = dest_index["_all"]["primaries"]["docs"]["count"]
 if src_total != dest_total:
 print('[failure] not consistent, '
 'index: %-20s, source total: %-10s size %6sM destination total: %-10s '
 % (str(index), str(src_total), src_size, str(dest_total)))
 continue
 print('[success] compare index total equal : index : %-20s, total: %-20s '
 % (str(index), str(dest_total)))

if __name__ == '__main__':
 main(sys.argv)

Step 1: Creating a Logstash Cluster
NO TE

● Logstash clusters are used to migrate data. By default, Logstash clusters are charged in
pay-per-use mode. After data migration is complete, you are advised to delete the
Logstash cluster to save costs.

● If there are multiple cluster indexes, you can create multiple Logstash clusters and
configure different migration tasks for them.

1. Log in to the CSS management console.
2. On the Dashboard or Clusters page, choose Logstash in the navigation pane

on the left.
3. Click Create Cluster. The Create Cluster page is displayed.
4. Specify Region and AZ.
5. Specify the basic cluster information, select the cluster type and cluster

version, and enter the cluster name.

Table 3-4 Basic parameters

Parameter Description

Cluster Type Select Logstash.

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

https://console-intl.huaweicloud.com/elasticsearch/?region=ap-southeast-3&locale=en-us#/es/management/dashboard

Parameter Description

Version 5.6.16 and 7.10.0 are supported.
If the Elasticsearch cluster version is 5.x, select Logstash
5.6.16. If the Elasticsearch cluster version is 7.x, select
Logstash 7.10.0.

Name Cluster name, which contains 4 to 32 characters. Only
letters, numbers, hyphens (-), and underscores (_) are
allowed and the value must start with a letter.

Figure 3-2 Configuring basic information

6. Set host specifications of the cluster. Set the number of Nodes to 1. Set Node
Specifications to 8 vCPUs | 16 GB and retain the default values for other
parameters.

Figure 3-3 Configuring host specifications

7. Set the enterprise project. Retain the default value.
8. Click Next: Configure Network. Configure the cluster network.

Table 3-5 Parameter description

Parameter Description

VPC A VPC is a secure, isolated, and logical network
environment.
Select the target VPC. Click View VPC to enter the VPC
management console and view the created VPC names
and IDs. If no VPCs are available, create one.
NOTE

The VPC must contain CIDRs. Otherwise, cluster creation will
fail. By default, a VPC will contain CIDRs.

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

Parameter Description

Subnet A subnet provides dedicated network resources that are
isolated from other networks, improving network
security.
Select the target subnet. You can access the VPC
management console to view the names and IDs of the
existing subnets in the VPC.

Security Group A security group implements access control for ECSs that
have the same security protection requirements in a
VPC. To view more details about the security group, click
View Security Group.
NOTE

Ensure that Port Range/ICMP Type is Any or a port range
includes port 9200 for the selected security group.

Figure 3-4 Configuring network specifications

9. Click Next: Configure Advanced Settings. You can select Default or Custom
for Advanced Settings. Retain the default settings in this example.

10. Click Next: Confirm. Check the configuration and click Next to create a
cluster.

11. Click Back to Cluster List to switch to the Clusters page. The cluster you
created is listed on the displayed page and its status is Creating. If the cluster
is successfully created, its status will change to Available.

Step 2: Verifying Cluster Connectivity

Verify the connectivity between Logstash and the source and destination clusters.

1. On the Logstash clusters page, click the name of the Logstash cluster created
in Step 1: Creating a Logstash Cluster. The Cluster Information page is
displayed. Choose Configuration Center in the navigation pane on the left to
go to the configuration center page. Alternatively, click Configuration Center
in the Operation column of the target cluster to go to the configuration
center page.

2. On the Configuration Center page, click Test Connectivity.

3. Enter the IP addresses and port numbers of the source and destination
clusters, and click Test.

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

Figure 3-5 Testing the connectivity

Step 3: Configuring a Logstash Full Data Migration Task
1. On the Logstash clusters page, click the name of the Logstash cluster created

in Step 1: Creating a Logstash Cluster. The Cluster Information page is
displayed. Choose Configuration Center, or click Configuration Center in the
Operation column of the target cluster. The Configuration Center page is
displayed.

2. Click Create in the upper right corner. On the configuration file creation page
that is displayed, select a cluster template and modify the migration
configuration file of the Elasticsearch cluster.

NO TE

In this example, HTTPS is not enabled for the two Elasticsearch clusters.

– Select a cluster template: In this example, data is imported from an
Elasticsearch cluster to an Elasticsearch cluster. Locate the elasticsearch
row and click Apply in the Operation column. Add configuration
information based on different cluster configurations.

– Modify the configuration file. Specify the configuration name, for
example, es-es-all. Specify the migration configuration file of the
Elasticsearch cluster. The following is an example of the configuration file:
input{
 elasticsearch{
 # IP address of the source cluster
 hosts => ["xx.xx.xx.xx:9200", "xx.xx.xx.xx:9200"]
 # Username and password for accessing the source cluster. Leave them blank if there is no
username or password.
 # user => "css_logstash"
 # password => "*****"
 # Information about the indexes to be migrated
 index => "*_202102"
 docinfo => true
 slices => 3
 size => 3000
 }
 }

Remove specified fields added by Logstash.
 filter {
 mutate {
 remove_field => ["@metadata", "@version"]
 }
 }

 output{
 elasticsearch{
 # IP address of the destination cluster
 hosts => ["xx.xx.xx.xx:9200","xx.xx.xx.xx:9200"]
 # Username and password for accessing the destination cluster. Leave them blank if there
is no username or password.
 # user => "css_logstash"

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

 # password => "*****"
 index => "%{[@metadata][_index]}"
 document_type => "%{[@metadata][_type]}"
 document_id => "%{[@metadata][_id]}"
 }
 }

Modify the following configurations:

Table 3-6 Modification of cluster configurations

Configuration Description

input hosts IP address of the source cluster. If the cluster
has multiple access nodes, separate them with
commas (,).

user Username for accessing the cluster. If there are
no usernames, use the number sign (#) to
comment out this item.

password Password for accessing the cluster. If there are
no usernames or passwords, use the number
sign (#) to comment out this item.

index The source indexes to be fully migrated. Use
commas (,) to separate multiple indexes.
Wildcard is supported, for example, index*.

docinfo Indicates whether to re-index the document.
The value must be true.

slices In some cases, it is possible to improve overall
throughput by consuming multiple distinct
slices of a query simultaneously using sliced
scrolls. It is recommended that the value range
from 2 to 8.

size Maximum number of hits returned for each
query

outpu
t

hosts IP address for accessing the Huawei Cloud CSS
cluster. If the cluster has multiple nodes,
separate them with commas (,).

user Username for accessing the cluster. If there are
no usernames, use the number sign (#) to
comment out this item.

password Password for accessing the cluster. If there are
no passwords, use the number sign (#) to
comment out this item.

index Name of the index migrated to the destination
cluster. It can be modified and expanded, for
example, logstash- %{+yyyy.MM.dd}.

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

Configuration Description

document_ty
pe

Ensure that the document type on the
destination end is the same as that on the
source end.

document_id Document ID in the index. It is recommended
that the document ID be the same as that on
the source end. If you need to automatically
generate the document ID, use the number
sign (#) to comment it out.

Step 4: Performing a Full Data Migration

Step 1 Use PuTTY to log in to the Linux VM created in Preparations.

Step 2 Run the python migrateTemplate.py command to migrate the index template.

Step 3 Run the python migrateMapping.py command to migrate indexes.

Step 4 On the Logstash clusters page, click the name of the Logstash cluster created in
Step 1: Creating a Logstash Cluster. The Cluster Information page is displayed.
Choose Configuration Center, or click Configuration Center in the Operation
column of the target cluster. The Configuration Center page is displayed.

Step 5 Select the configuration file created in section Step 3: Configuring a Logstash
Full Data Migration Task and click Start in the upper left corner.

Step 6 Determine whether to start data migration immediately once the Logstash service
is started.

Step 7 If you enable Logstash, you can view the startup configuration file under the pipe.

Step 8 After the data migration is complete, use PuTTY to log in to the Linux VM and run
the python checkIndices.py command to compare the data.

----End

Step 5: Deleting the Logstash Cluster
After the cluster migration is complete, delete the Logstash cluster.

1. Log in to the CSS management console.
2. Choose Clusters > Logstash. On the displayed page, locate the row that

contains the target cluster and click More > Delete in the Operation column.
3. In the displayed dialog box, enter the name of the cluster to be deleted again

and click OK.

3.2.2 Using Logstash to Perform Incremental Data Migration
Logstash supports full data migration and incremental data migration. You can
select full migration for the first time, and incremental migration for subsequent
data migration. This section describes how to use Logstash to incrementally
migrate cluster data. Incremental migration requires indexes with timestamps to
identify incremental data.

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

Prepare for the migration by referring to Restrictions and Preparations. The
procedure is as follows:

● Step 1: Creating a Logstash Cluster
● Step 2: Verifying Cluster Connectivity
● Step 3: Configuring a Logstash Incremental Data Migration Task
● Step 4: Performing an Incremental Data Migration
● Step 5: Deleting the Logstash Cluster

Restrictions
● Logstash version restrictions:

CSS supports clusters of versions 5.5.1, 6.3.2, 6.5.4, 7.1.1, 7.6.2, and 7.10.2.
Ensure that the major versions of the clusters whose data you want to
migrate are the same.
If the Elasticsearch cluster version is 5.x, select Logstash 5.6.16. If the
Elasticsearch cluster version is 7.x, select Logstash 7.10.0.

● Do not modify indexes during cluster migration. Otherwise, the original data
will be inconsistent with the migrated data.

● If the index size is less than 100 GB, separate index analysis is not required.

Preparations
● Create a VM for data migration.

a. Create a VM to migrate the metadata of the source cluster.

i. Create a Linux ECS with 2 vCPUs and 4 GB memory.
ii. Run the curl http:// {IP_address}:{port} command to test the

connectivity between the VM and the source cluster and between the
VM and the destination cluster.
IP_address indicates the access address of the source and destination
clusters. Enter the actual port number of the cluster. The default port
is 9200.

NO TE

The following example applies only to non-security clusters.
curl http://10.234.73.128:9200
{
 "name" : "voc_es_cluster_new-ess-esn-1-1",
 "cluster_name" : "voc_es_cluster_new",
 "cluster_uuid" : "1VbP7-39QNOx_R-llXKKtA",
 "version" : {
 "number" : "6.5.4",
 "build_flavor" : "default",
 "build_type" : "tar",
 "build_hash" : "d2ef93d",
 "build_date" : "2018-12-17T21:17:40.758843Z",
 "build_snapshot" : false,
 "lucene_version" : "7.5.0",
 "minimum_wire_compatibility_version" : "5.6.0",
 "minimum_index_compatibility_version" : "5.0.0"
 },
 "Tagline" : "You Know, for Search"
}

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

● Prepare the tools and software.
The installation method is determined by whether the VM can be connected
to the Internet. If VM can be connected to the Internet, use yum and pip to
install the software. If VM cannot be connected to the Internet, download the
installation package to the VM and run the installation commands.
The online installation procedure is as follows:

a. Run yum install python2 to install python2.
[root@ecs opt]# yum install python2

b. Run yum install python-pip to install pip.
[root@ecs opt]# yum install python-pip

c. Run pip install pyyaml to install the YAML dependency.
d. Run pip install requests to install the requests dependency.

The online installation procedure is as follows:

a. Download the python2 installation package from https://
www.python.org/downloads/release/python-2718/. Download and
install the source code.

Figure 3-6 Downloading the python2 package

b. Use WinSCP to upload the Python installation package to the opt
directory and install Python.
Decompress the Python package.
[root@ecs-52bc opt]# tar -xvf Python-2.7.18.tgz
Python-2.7.18/Modules/zlib/crc32.c
Python-2.7.18/Modules/zlib/gzlib.c
Python-2.7.18/Modules/zlib/inffast.c
Python-2.7.18/Modules/zlib/example.c
Python-2.7.18/Modules/python.c
Python-2.7.18/Modules/nismodule.c
Python-2.7.18/Modules/Setup.config.in
...
After the decompression, go to the directory.
[root@ecs-52bc opt]# cd Python-2.7.18
Check the file configuration installation path.
[root@ecs-52bc Python-2.7.18]# ./configure --prefix=/usr/local/python2
...
checking for build directories... checking for --with-computed-gotos... no value specified
checking whether gcc -pthread supports computed gotos... yes
done
checking for ensurepip... no
configure: creating ./config.status
config.status: creating Makefile.pre
config.status: creating Modules/Setup.config
config.status: creating Misc/python.pc
config.status: creating Modules/ld_so_aix
config.status: creating pyconfig.h
creating Modules/Setup

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

https://www.python.org/downloads/release/python-2718/
https://www.python.org/downloads/release/python-2718/

creating Modules/Setup.local
creating Makefile
Compile Python.
[root@ecs-52bc Python-2.7.18]# make
Install Python.
[root@ecs-52bc Python-2.7.18]# make install

c. Check the Python installation result.
Check the Python version.
[root@ecs-52bc Python-2.7.18]# python --version
Python 2.7.5
Check the pip version.
[root@ecs-52bc Python-2.7.18]# pip --version
pip 7.1.2 from /usr/lib/python2.7/site-packages/pip-7.1.2-py2.7.egg (python 2.7)
[root@ecs-52bc Python-2.7.18]#

● Prepare the execution script.

a. Run the vi migrateConfig.yaml command to add configuration files.
es_cluster_new:
Cluster name
 clustername: es_cluster_new
 # Address of the source Elasticsearch cluster, with http:// at the beginning
 src_ip: http://x.x.x.x:9200
 # If there is no username, set the password to "".
 src_username: ""
 src_password: ""
 # Address of the target Elasticsearch cluster, with http:// at the beginning
 dest_ip: http://x.x.x.x:9200
 # If there is no username, set the password to "".
 dest_username: ""
 dest_password: ""
 #This parameter is optional. The default value is false. It is used by migrateMapping.py.
 # Indicates whether to process only the mapping address indexes in the file.
 # If this parameter is set to true, only the indexes in the following mappings are obtained and
created in the target.
 # If this parameter is set to false, all the indexes of the source cluster are obtained, excluding
the following: .kibana, .*
 # Match the index names with the following mappings. If an index name matches a mapping,
use the value of the mapping as the index name in the target.
 # If no match is found, the original index name in the source is used.
 only_mapping: false
 # Index to be migrated. key indicates the index name in the source, and value indicates the
index name in the target.
 mapping:
 test_index_1: test_index_1

 # This parameter is optional. The default value is false. It is used by checkIndices.py.
 # If this parameter is set to false, all indexes and the number of documents are compared. If
this parameter is set to true, only the number of indexes is compared.
 only_compare_index: false

Configuration file parameters

Configuration Description

clustername Cluster name

src_ip IP address for accessing the source cluster.
Only one IP address is required. The
default port number is 9200. If the port
number for accessing the cluster is not
9200, use the actual port number.

src_username Username for accessing the source cluster.
If this parameter is not required, set it to
"".

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

Configuration Description

src_password Password for accessing the source cluster.
If this parameter is not required, set it to
"".

dest_ip IP address for accessing the target cluster.
Only one IP address is required. The
default port number is 9200. If the port
number for accessing the cluster is not
9200, use the actual port number.

dest_username Username for accessing the target cluster.
If this parameter is not required, set it to
"".

dest_password Password for accessing the target cluster.
If this parameter is not required, set it to
"".

b. Run the vi checkIndices.py command. Copy the following script to

generate the index data comparison script:
-*- coding:UTF-8 -*-
import sys
import yaml
import requests
import re
import json
import os

def printDividingLine():
 print("<===>")

def get_cluster_version(url, auth=None):
 response = requests.get(url, auth=auth)
 if response.status_code != 200:
 print("*** get ElasticSearch message failed. resp statusCode:" + str(
 response.status_code) + " response is " + response.text)
 return False
 cluster = response.json()
 version = cluster["version"]["number"]
 return True

get all indices
def get_indices(url, source_auth):
 response = requests.get(url + "/_alias", auth=source_auth)
 if response.status_code != 200:
 print("*** get all index failed. resp statusCode:" + str(
 response.status_code) + " response is " + response.text)
 exit()
 all_index = response.json()
 system_index = []
 create_index = []
 for index in list(all_index.keys()):
 if (index.startswith(".")):
 system_index.append(index)
 else:
 create_index.append(index)
 return create_index

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

def get_mapping(url, _auth, index):
 source_url = url + "/" + index
 index_response = requests.get(source_url, auth=_auth)
 if index_response.status_code != 200:
 print("*** get ElasticSearch message failed. resp statusCode:" + str(
 index_response.status_code) + " response is " + index_response.text)
 return "[failure] --- index is not exist in destination es. ---"
 mapping = index_response.json()
 return mapping

def get_index_total(url, index, es_auth):
 stats_url = url + "/" + index + "/_stats"
 index_response = requests.get(stats_url, auth=es_auth, verify=False)
 if index_response.status_code != 200:
 print("*** get ElasticSearch stats message failed. resp statusCode:" + str(
 index_response.status_code) + " response is " + index_response.text)
 return 0
 return index_response.json()

def get_indices_stats(url, es_auth):
 endpoint = url + "/_cat/indices"
 indicesResult = requests.get(endpoint, es_auth)
 indicesList = indicesResult.split("\n")
 indexList = []
 for indices in indicesList:
 indexList.append(indices.split()[2])
 return indexList

def loadConfig(argv):
 if argv is None or len(argv) != 2:
 config_yaml = "migrateConfig.yaml"
 else:
 config_yaml = argv[1]
 config_file = open(config_yaml)
 # python3
 # return yaml.load(config_file, Loader=yaml.FullLoader)
 return yaml.load(config_file)

def main(argv):
 requests.packages.urllib3.disable_warnings()
 print("begin to migrate index mapping!")
 config = loadConfig(argv)
 src_clusters = config.keys()

 print("begin to process cluster name :")
 for name in src_clusters:
 print(name)
 print("cluster count:" + str(src_clusters.__len__()))

 for name, value in config.items():
 printDividingLine()
 source = value["src_ip"]
 source_user = value["src_username"]
 source_passwd = value["src_password"]
 source_auth = None
 if source_user != "":
 source_auth = (source_user, source_passwd)
 dest = value["dest_ip"]
 dest_user = value["dest_username"]
 dest_passwd = value["dest_password"]
 dest_auth = None
 if dest_user != "":
 dest_auth = (dest_user, dest_passwd)
 cluster_name = name

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

 if "clustername" in value:
 cluster_name = value["clustername"]

 print("start to process cluster :" + cluster_name)
 # get all indices
 all_source_index = get_indices(source, source_auth)
 all_dest_index = get_indices(dest, dest_auth)

 if not os.path.exists("mappingLogs"):
 os.makedirs("mappingLogs")
 filename = "mappingLogs/" + str(cluster_name) + "#indices_stats"
 with open(filename + ".json", "w") as f:
 json.dump("cluster name: " + cluster_name, f)
 f.write("\n")
 json.dump("source indices: ", f)
 f.write("\n")
 json.dump(all_source_index, f, indent=4)
 f.write("\n")
 json.dump("destination indices : ", f)
 f.write("\n")
 json.dump(all_dest_index, f, indent=4)
 f.write("\n")

 print("source indices total : " + str(all_source_index.__len__()))
 print("destination index total : " + str(all_dest_index.__len__()))

 filename_src = "mappingLogs/" + str(cluster_name) + "#indices_source_mapping"
 filename_dest = "mappingLogs/" + str(cluster_name) + "#indices_dest_mapping"
 with open(filename_src + ".json", "a") as f_src:
 json.dump("cluster name: " + cluster_name, f_src)
 f_src.write("\n")
 with open(filename_dest + ".json", "a") as f_dest:
 json.dump("cluster name: " + cluster_name, f_dest)
 f_dest.write("\n")
 for index in all_source_index:
 mapping = get_mapping(source, source_auth, index)
 with open(filename + ".json", "a") as f_src:
 json.dump("========================", f_src)
 f_src.write("\n")
 json.dump(mapping, f_src, indent=4)
 f_src.write("\n")
 with open(filename_src + ".json", "a") as f_src:
 json.dump("========================", f_src)
 f_src.write("\n")
 json.dump(mapping, f_src, indent=4)
 f_src.write("\n")

 mapping = get_mapping(dest, dest_auth, index)
 with open(filename + ".json", "a") as f_dest:
 json.dump("========================", f_dest)
 f_dest.write("\n")
 json.dump(mapping, f_dest, indent=4)
 f_dest.write("\n")
 with open(filename_dest + ".json", "a") as f_src:
 json.dump("========================", f_src)
 f_src.write("\n")
 json.dump(mapping, f_src, indent=4)
 f_src.write("\n")

 print("source indices write file success, file: " + filename_src)
 print("destination indices write file success, file: " + filename_dest)

 if "only_compare_index" in value and value["only_compare_index"]:
 print("[success] only compare mapping, not compare index count.")
 continue

 for index in all_source_index:
 index_total = get_index_total(value["src_ip"], index, source_auth)
 src_total = index_total["_all"]["primaries"]["docs"]["count"]

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

 src_size = int(index_total["_all"]["primaries"]["store"]["size_in_bytes"]) / 1024 / 1024
 dest_index = get_index_total(value["dest_ip"], index, dest_auth)
 if dest_index is 0:
 print('[failure] not found, index: %-20s, source total: %-10s size %6sM'
 % (str(index), str(src_total), src_size))
 continue
 dest_total = dest_index["_all"]["primaries"]["docs"]["count"]
 if src_total != dest_total:
 print('[failure] not consistent, '
 'index: %-20s, source total: %-10s size %6sM destination total: %-10s '
 % (str(index), str(src_total), src_size, str(dest_total)))
 continue
 print('[success] compare index total equal : index : %-20s, total: %-20s '
 % (str(index), str(dest_total)))

if __name__ == '__main__':
 main(sys.argv)

Step 1: Creating a Logstash Cluster
NO TE

● Logstash clusters are used to migrate data. By default, Logstash clusters are charged in
pay-per-use mode. After data migration is complete, you are advised to delete the
Logstash cluster to save costs.

● If there are multiple cluster indexes, you can create multiple Logstash clusters and
configure different migration tasks for them.

1. Log in to the CSS management console.
2. On the Dashboard or Clusters page, choose Logstash in the navigation pane

on the left.
3. Click Create Cluster. The Create Cluster page is displayed.
4. Specify Region and AZ.
5. Specify the basic cluster information, select the cluster type and cluster

version, and enter the cluster name.

Table 3-7 Basic parameters

Parameter Description

Cluster Type Select Logstash.

Version 5.6.16 and 7.10.0 are supported.
If the Elasticsearch cluster version is 5.x, select Logstash
5.6.16. If the Elasticsearch cluster version is 7.x, select
Logstash 7.10.0.

Name Cluster name, which contains 4 to 32 characters. Only
letters, numbers, hyphens (-), and underscores (_) are
allowed and the value must start with a letter.

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

https://console-intl.huaweicloud.com/elasticsearch/?region=ap-southeast-3&locale=en-us#/es/management/dashboard

Figure 3-7 Configuring basic information

6. Set host specifications of the cluster. Set the number of Nodes to 1. Set Node
Specifications to 8 vCPUs | 16 GB and retain the default values for other
parameters.

Figure 3-8 Configuring host specifications

7. Set the enterprise project. Retain the default value.
8. Click Next: Configure Network. Configure the cluster network.

Table 3-8 Parameter description

Parameter Description

VPC A VPC is a secure, isolated, and logical network
environment.
Select the target VPC. Click View VPC to enter the VPC
management console and view the created VPC names
and IDs. If no VPCs are available, create one.
NOTE

The VPC must contain CIDRs. Otherwise, cluster creation will
fail. By default, a VPC will contain CIDRs.

Subnet A subnet provides dedicated network resources that are
isolated from other networks, improving network
security.
Select the target subnet. You can access the VPC
management console to view the names and IDs of the
existing subnets in the VPC.

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

Parameter Description

Security Group A security group implements access control for ECSs that
have the same security protection requirements in a
VPC. To view more details about the security group, click
View Security Group.
NOTE

Ensure that Port Range/ICMP Type is Any or a port range
includes port 9200 for the selected security group.

Figure 3-9 Configuring network specifications

9. Click Next: Configure Advanced Settings. You can select Default or Custom
for Advanced Settings. Retain the default settings in this example.

10. Click Next: Confirm. Check the configuration and click Next to create a
cluster.

11. Click Back to Cluster List to switch to the Clusters page. The cluster you
created is listed on the displayed page and its status is Creating. If the cluster
is successfully created, its status will change to Available.

Step 2: Verifying Cluster Connectivity
Verify the connectivity between Logstash and the source and destination clusters.

1. On the Logstash clusters page, click the name of the Logstash cluster created
in Step 1: Creating a Logstash Cluster. The Cluster Information page is
displayed. Choose Configuration Center in the navigation pane on the left to
go to the configuration center page. Alternatively, click Configuration Center
in the Operation column of the target cluster to go to the configuration
center page.

2. On the Configuration Center page, click Test Connectivity.
3. Enter the IP addresses and port numbers of the source and destination

clusters, and click Test.

Figure 3-10 Testing the connectivity

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

Step 3: Configuring a Logstash Incremental Data Migration Task
1. On the Logstash clusters page, click the name of the Logstash cluster created

in Step 1: Creating a Logstash Cluster. The Cluster Information page is
displayed. Choose Configuration Center, or click Configuration Center in the
Operation column of the target cluster. The Configuration Center page is
displayed.

2. Click Create in the upper right corner. On the configuration file creation page
that is displayed, select a cluster template and modify the migration
configuration file of the Elasticsearch cluster.
In this example, HTTPS is not enabled for the two Elasticsearch clusters.
– Select a cluster template: In this example, data is imported from an

Elasticsearch cluster to an Elasticsearch cluster. Locate the elasticsearch
row and click Apply in the Operation column. Add cluster configurations
as required.

– Modify the configuration file. Specify the configuration name, for
example, es-es-inc. Specify the migration configuration file of the
Elasticsearch cluster. The following is an example of the configuration file:
input{
 elasticsearch{
 hosts => ["xx.xx.xx.xx:9200"]
 user => "css_logstash"
 password => "******"
 index => "*_202102"
 query => '{"query":{"bool":{"should":[{"range":{"postsDate":{"from":"2021-05-25
00:00:00"}}}]}}}'
 docinfo => true
 size => 1000
 #scroll => "5m"

 }
 }

 filter {
 mutate {
 remove_field => ["@timestamp", "@version"]
 }
 }

 output{
 elasticsearch{
 hosts => ["xx.xx.xx.xx:9200","xx.xx.xx.xx:9200"]
 user => "admin"
 password => "******"
 index => "%{[@metadata][_index]}"
 document_type => "%{[@metadata][_type]}"
 document_id => "%{[@metadata][_id]}"
 }

 #stdout { codec => rubydebug { metadata => true }}
 }

Modify the following configurations:

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

Table 3-9 Modification of cluster configurations

Configuration Description

hosts Access addresses of the source and target clusters.
If a cluster has multiple nodes, enter all their
access addresses.

user Username for accessing the cluster. If there are no
usernames, use the number sign (#) to comment
out this item.

password Password for accessing the cluster. If there are no
usernames or passwords, use the number sign (#)
to comment out this item.

index Indexes to be incrementally migrated. One
configuration file supports the incremental
migration of only one index.

query Identifier of incremental data. Generally, it is the
DLS statement of Elasticsearch and needs to be
analyzed in advance. postsDate indicates the time
field in the service.
{"query":{"bool":{"should":[{"range":{"postsDate":
{"from":"2021-05-25 00:00:00"}}}]}}}

This command means to migrate data added after
2021-05-25. During multiple incremental
migrations, you need to change the log value. If
the indexes in the source end Elasticsearch use the
timestamp format, convert the data to a
timestamp here. The validity of this command
must be verified in advance.

scroll If there is massive data on the source end, you can
use the scroll function to obtain data in batches to
prevent Logstash memory overflow. The default
value is "1m". The interval cannot be too long.
Otherwise, data may be lost.

NO TE

The incremental migration configuration varies according to the index and must
be provided based on the index analysis.

Step 4: Performing an Incremental Data Migration

Step 1 Use PuTTY to log in to the Linux VM created in Preparations.

Step 2 On the Logstash clusters page, click the name of the Logstash cluster created in
Step 1: Creating a Logstash Cluster. The Cluster Information page is displayed.
Choose Configuration Center, or click Configuration Center in the Operation
column of the target cluster. The Configuration Center page is displayed.

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

Step 3 Select the configuration file created in section Step 3: Configuring a Logstash
Incremental Data Migration Task and click Start in the upper left corner.

Step 4 Start data migration immediately once the Logstash service is started as
prompted .

Step 5 You can view the startup configuration file under the pipe.

Step 6 After the data migration is complete, use PuTTY to log in to the Linux VM and run
the python checkIndices.py command to compare the data.

----End

Step 5: Deleting the Logstash Cluster

After the cluster migration is complete, delete the Logstash cluster.

1. Log in to the CSS management console.
2. Choose Clusters > Logstash. On the displayed page, locate the row that

contains the target cluster and click More > Delete in the Operation column.
3. In the displayed dialog box, enter the name of the cluster to be deleted again

and click OK.

3.2.3 Migrating Data Through Backup and Restoration (from
CSS Elasticsearch)

Overview

Data can be migrated between CSS Elasticsearch clusters by backing up and
restoring cluster snapshots.

Application scenarios:

● Cluster upgrade: Migrate data from a cluster of an earlier version to a cluster
of a later version.

● Cluster merge: Merge the index data of two clusters.

This section describes how to take a snapshot of a cluster and restore it to another
cluster. Take Elasticsearch cluster Es-1 and Es-2 as an example.

Migration Duration

The number of nodes or index shards in the source and destination clusters
determines how long the data migration will take. Data migration consists of two
phases: data backup and restoration. The backup duration is determined by the
source cluster and the restoration duration is determined by the destination
cluster. The formula for calculating the total migration duration is as follows:

● If the number of index shards is greater than the number of nodes:
Total duration (in seconds) = (800 GB ÷ 40 MB ÷ Number of nodes in the
source cluster + 800 GB ÷ 40 MB ÷ Number of nodes in the destination
cluster) x Number of indexes

● If the number of index shards is smaller than the number of nodes:

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

Total duration (in seconds) = (800 GB ÷ 40 MB ÷ Number of index shards in
the source cluster + 800 GB ÷ 40 MB ÷ Number of index shards in the
destination cluster) x Number of indexes

NO TE

The migration duration estimated using the formula is the minimal duration possible (if
each node transmits data at the fastest speed, 40 MB/s). The actual duration also depends
on factors such as the network and resources condition.

Prerequisites
● The destination cluster (Es-2) and source cluster (Es-1) are available. You are

advised to migrate a cluster during off-peak hours.

● Ensure that the destination cluster (Es-2) and source cluster (Es-1) are in the
same region.

● Ensure that the version of the destination cluster (Es-2) is later than or same
as that of the source cluster (Es-1).

● Ensure that the number of nodes in the destination cluster (Es-2) is greater
than half of the number of nodes in the source cluster (Es-1).

● Ensure that the number of nodes in the destination cluster (Es-2) is greater
than or equal to the number of shards in the source cluster (Es-1).

● Ensure that the CPU, memory, and disk configurations of the target cluster
(Es-2) are greater than or equal to those of the source cluster (Es-1).

Procedure
1. Log in to the Cloud Search Service management console.

2. Choose Clusters > Elasticsearch. On the displayed page, click the source
cluster name Es-1 to go to the basic information page.

3. In the navigation pane, choose Cluster Snapshots, and set basic snapshot
configurations.

Table 3-10 Basic configurations for a cluster snapshot

Parameter Description

OBS
Bucket

Select an OBS bucket for storing cluster snapshots.

Backup
Path

Storage path of the cluster snapshot in the OBS bucket. You
can retain the default value.

IAM
Agency

Select an IAM agency to authorize CSS to access or maintain
data stored in OBS.
The IAM agency must have the OBS Administrator
permission for project OBS in region Global service.

4. Click Create. In the dialog box that is displayed, configure the parameters and
click OK to manually create a snapshot.

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

Table 3-11 Snapshot creation parameters

Parameter Description

Snapshot
Name

User-defined snapshot name. You can retain the default value.

Index Enter the name of the index to be backed up. Use commas (,)
to separate multiple indexes. Uppercase letters, spaces, and
the following special characters are not allowed: "\<|>/? If you
do not specify this parameter, data of all indexes in the cluster
is backed up by default. You can use the asterisk (*) to back
up data of certain indexes. For example, if you enter index*,
then data of indexes with the name prefix of index will be
backed up.

Descriptio
n

Snapshot description.

In the snapshot management list, if the snapshot status is Available, the
snapshot has been created.

5. In the snapshot management list, click Restore in the Operation column of
the snapshot and configure restoration parameters to restore data to
destination cluster Es-2.

Table 3-12 Snapshot restoration parameters

Parameter Description

Index Enter the name of the index to be restored. If this parameter is
not specified, all index data will be restored. You can use the
asterisk (*) to match multiple indexes. For example, index*
indicates that all indexes with the prefix index in snapshots
are restored.

Rename
Pattern

Index name matching rule. The Rename Pattern and Rename
Replacement take effect only when they are configured at the
same time. You can configure them to rename matched
indexes in snapshots.

Rename
Replaceme
nt

Rule for renaming an index name. The Rename Pattern and
Rename Replacement take effect only when they are
configured at the same time.
The default value restored_index_$1 indicates that restored_
is added in front of the names of all restored indexes.

Cluster Select a destination cluster, for example, Es-2.
NOTICE

If the source and destination clusters have indexes with the same
names, the indexes in the destination cluster will be overwritten by
those in the source cluster after the restoration.

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

In the snapshot management list, if Task Status changes to Restoration
succeeded, data in source cluster Es-1 is successfully migrated to destination
cluster Es-2.

3.2.4 Migrating Data Through Backup and Restoration (from
Third-Party Elasticsearch)

To migrate data from a user-built or third-party Elasticsearch cluster to a Huawei
Cloud Elasticsearch cluster, perform the steps in this section.

Prerequisites
● Before using backup and restoration, ensure that:

– Target Elasticsearch version ≥ Source Elasticsearch version
– Number of candidate master nodes of the target Elasticsearch cluster >

Half of the number of candidate master nodes of the source Elasticsearch
cluster

● Backup and restoration do not support incremental data synchronization. You
need to stop data update before backing up data.

● The target Elasticsearch cluster has been created in CSS.

Migration Process

The following figure shows the cluster migration process when the source is a
user-built or third-party Elasticsearch cluster, and the target is an Elasticsearch
cluster of CSS.

Figure 3-11 Migration through backup and restoration

Procedure

Step 1 Log in to the third-party cloud where Elasticsearch is located and create a shared
repository that supports the S3 protocol.

Step 2 Create a snapshot backup repository in the user-built or third-party Elasticsearch
cluster to store Elasticsearch snapshot data.

For example, create a backup repository named my_backup at Elasticsearch and
associate it with the repository OSS.

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

PUT _snapshot/my_backup
 {
 # Repository type.
 "type": "oss",
 "settings": {
 # # Private network domain name of the repository in step 1.
 "endpoint": "http://oss-xxx.xxx.com",
 # User ID and password of the repository. Hard-coded or plaintext access keys (AK/SK) are risky. For
security purposes, encrypt your access keys and store them in the configuration file or environment
variables. In this example, access keys are stored in the environment variables for identity authentication.
Before running the code in this example, configure the AK and SK in environment variables.
 "access_key_id": "ak",
 "secret_access_key": "sk",
 # Bucket name of the repository created in step 1.
 "bucket": "patent-esbak",
 # # Whether to enable snapshot file compression.
 "compress": false,
 # If the size of the uploaded snapshot data exceeds the value of this parameter, the data will be
uploaded as blocks to the repository.
 "chunk_size": "1g",
 # Start position of the repository. The default value is the root directory.
 "base_path": "snapshot/"
 }
}

Step 3 Create a snapshot for the user-built or third-party Elasticsearch cluster.
● Create a snapshot for all indexes.

For example, create a snapshot named snapshot_1.
PUT _snapshot/my_backup/snapshot_1?wait_for_completion=true

● Create a snapshot for specified indexes.
For example, create a snapshot named snapshot_test that contains indexes
patent_analyse and patent.
PUT _snapshot/my_backup/snapshot_test
{
"indices": "patent_analyse,patent"
}

Step 4 View the snapshot creation progress of the cluster.
● Run the following command to view information about all snapshots:

GET _snapshot/my_backup/_all

● Run the following command to view information about snapshot_1:
GET _snapshot/my_backup/snapshot_1

Step 5 Migrate snapshot data from the repository to OBS.

The Object Storage Migration Service (OMS) supports data migration from
multiple cloud vendors to OBS. For details, see Migration from Other Clouds to
Huawei Cloud.

NO TE

When creating a migration task on OMS, set Object Metadata to Migrate. Otherwise, data
migration may be abnormal.

Step 6 Create a repository in the Elasticsearch cluster of CSS and associate it with OBS.
This repository will be used for restoring the snapshot data of the user-built or
third-party Elasticsearch cluster.

For example, create a repository named my_backup_all in the cluster and
associate it with the destination OBS.

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

https://support.huaweicloud.com/intl/en-us/bestpractice-oms/oms_05_5300.html
https://support.huaweicloud.com/intl/en-us/bestpractice-oms/oms_05_5300.html

PUT _snapshot/my_backup_all/
{
 "type" : "obs",
 "settings" : {
 # Private network domain name of OBS
 "endpoint" : "obs.xxx.xxx.com",
 "region" : "xxx",
 # Username and password for accessing OBS. Hard-coded or plaintext access keys (AK/SK) are risky.
For security purposes, encrypt your access keys and store them in the configuration file or environment
variables. In this example, access keys are stored in the environment variables for identity authentication.
Before running the code in this example, configure the AK and SK in environment variables.
 "access_key": "ak",
 "secret_key": "sk",
 # OBS bucket name, which must be the same as the destination OBS bucket name in the previous step
 "bucket" : "esbak",
 "compress" : "false",
 "chunk_size" : "1g",
 #Note that there is no slash (/) after snapshot.
 "base_path" : "snapshot",
 "max_restore_bytes_per_sec": "100mb",
 "max_snapshot_bytes_per_sec": "100mb"
 }
}

Step 7 Restore the snapshot data to the Elasticsearch cluster of CSS.

1. Check information about all snapshots.
GET _snapshot

2. Restore a snapshot
– Restore all the indexes from a snapshot. For example, to restore all the

indexes from snapshot_1, run the following command:
POST _snapshot/my_backup_all/snapshot_1/_restore?wait_for_completion=true

– Restores some indexes from a snapshot. For example, in the snapshot
named snapshot_1, restore only the indexes that do not start with a
period (.).
POST _snapshot/my_backup/snapshot_1/_restore
{"indices":"*,-.monitoring*,-.security*,-.kibana*","ignore_unavailable":"true"}

– Restore a specified index from a snapshot and renames the index. For
example, in snapshot_1, restore index_1 to restored_index_1 and
index_2 to restored_index_2.
POST /_snapshot/my_backup/snapshot_1/_restore
{
 # Restore only indexes index_1 and index_2 and ignore other indexes in the snapshot.
 "indices": "index_1,index_2"
 # Search for the index that is being restored. The index name must match the provided
template.
 "rename_pattern": "index_(.+)",
 # Rename the found index.
 "rename_replacement": "restored_index_$1"
}

Step 8 View the snapshot restoration result.
● Run the following command to view the restoration results of all snapshots:

GET /_recovery/

● Run the following command to check the snapshot restoration result of a
specified index:
 GET {index_name}/_recovery

----End

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

3.3 Migration from Kafka/MQ

Process
In industries dealing with a large amount of data, such as IoT, news, public
opinion analysis, and social networking, message middleware such as Kafka and
MQ is used to balance traffic in peak and off-peak hours. The tools such as Flink
and Logstash are then used to consume data, preprocess data, and import data to
the search engine, providing the search service for external systems.

The following figure shows the process of migrating data from a Kafka or MQ
cluster.

Figure 3-12 Migration from a Kafka or MQ cluster

This migration solution is convenient and flexible.

● Convenient: Once the data of the two ES clusters becomes consistent, a
cutover can be performed at any time.

● Flexible: Data can be added, deleted, modified, and queried on both sides.

Procedure

Step 1 Subscribe to incremental data. Create a consumer group in Kafka or MQ, and
subscribe to incremental data.

Step 2 Synchronize inventory data. Use a tool such as Logstash to migrate data from the
source Elasticsearch cluster to the CSS cluster. If Logstash is used for data
migration, see Deploying Logstash and Migrating Cluster Data.

Step 3 Synchronize incremental data. After the inventory data is synchronized, enable the
incremental consumer group. Based on the idempotence of Elasticsearch
operations on data, when the new consumer group catches up with the previous
consumer group, the data on both sides will be consistent.

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

NO TE

For log migration, data in the source Elasticsearch cluster does not need to be migrated,
and you can skip the inventory data synchronization. After the incremental data
synchronization is complete, synchronize the data for a period of time (for example, three
or seven days), and then directly perform cutover.

----End

3.4 Migration from a Database

Process
Elasticsearch supports full-text search and ad hoc queries. It is often used as a
supplement to relational databases, such as GaussDB(for MySQL), to improve the
full-text search and high-concurrency ad hoc query capabilities of databases.

The following figure shows the process of migrating data from a database.

Figure 3-13 Migration from a database

This migration solution is convenient and flexible.

● Convenient: You can start a cutover while the CSS synchronizes incremental
data.

● Flexible: Data can be added, deleted, modified, and queried on both sides.

Migration Guide
Data Replication Service (DRS) can be used to migrate and synchronize data
between relational databases, such as GaussDB(for MySQL). For details about the
supported database types, see Synchronization Overview.

Table 3-13 provides guidance for migrating source databases to CSS.

Table 3-13 Data synchronization guide

Source DB Type Destination
DB Type

Synchronizatio
n Mode

Related Documents

RDS for MySQL CSS/ES Full +
incremental
synchronization

From MySQL to CSS/ES

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

https://support.huaweicloud.com/intl/en-us/realtimesyn-drs/drs_05_0005.html
https://support.huaweicloud.com/intl/en-us/realtimesyn-drs/drs_04_0460.html

Source DB Type Destination
DB Type

Synchronizatio
n Mode

Related Documents

● Local user-
built MySQL
databases

● User-built
MySQL
databases on
ECS

CSS/ES Full +
incremental
synchronization

From MySQL to CSS/ES

GaussDB(for
MySQL)

CSS/ES Full +
incremental
synchronization

From GaussDB(for
MySQL) to CSS/ES

Cloud Search Service
Best Practices 3 Cluster Migration

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

https://support.huaweicloud.com/intl/en-us/realtimesyn-drs/drs_04_0460.html
https://support.huaweicloud.com/intl/en-us/realtimesyn-drs/drs_04_0462.html
https://support.huaweicloud.com/intl/en-us/realtimesyn-drs/drs_04_0462.html

4 Cluster Access

4.1 Overview
Elasticsearch clusters support multiple connection modes. You can determine how
to access an Elasticsearch cluster based on the programming language used for
your services. For more information about the clients used for CSS clusters in
different security modes (non-security mode, security mode+HTTP, and security
mode+HTTPS), see Table 4-1.

● CSS provides visualized Kibana and Cerebro APIs for monitoring and operating
clusters. On the CSS console, you can quickly access the Kibana and Cerebro
of an Elasticsearch cluster.

● You can access Elasticsearch clusters by using cURL commands, Java clients,
and Python clients. You can also use Hadoop clients to develop complex
applications. Elasticsearch provides Java clients, including Rest High Level
Client, Rest Low Level Client, and Transport Client. To avoid compatibility
issues, use the Java client that matches your Elasticsearch cluster version.

Table 4-1 Support for access from different clients

Client Cluster in Non-
Security Mode

Cluster in Security
Mode + HTTP

Cluster in Security
Mode + HTTPS

Kibana Supported by clusters in all the three modes. To log in to Kibana
from a cluster in security mode, enter the username and
password for authentication. For details, see Accessing an
Elasticsearch Cluster.

Cerebro Supported by clusters in all the three modes. To log in to
Cerebro from a cluster in security mode, enter the username and
password for authentication. For details, see Accessing an
Elasticsearch Cluster.

cURL Supported by clusters in all the three modes. For details about
the commands used for each mode, see Accessing a Cluster
Using cURL Commands.

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

Client Cluster in Non-
Security Mode

Cluster in Security
Mode + HTTP

Cluster in Security
Mode + HTTPS

Java (Rest
High Level
Client)

Supported by clusters in all the three modes. For details about
the commands used for each mode, see Accessing a Cluster
Through the Rest High Level Client.

Java (Rest
Low Level
Client)

Supported by clusters in all the three modes. For details about
the commands used for each mode, see Accessing a Cluster
Through the Rest Low Level Client.

Java
(Transport
Client)

Only clusters in
non-security mode
are supported. For
details, see
Accessing the
Cluster Through
the Transport
Client.

Not supported Not supported

Java (Spring
Boot)

Supported by clusters in all the three modes. For details about
the commands used for each mode, see Using Spring Boot to
Access a Cluster.

Python Supported by clusters in all the three modes. For details about
the commands used for each mode, see Accessing a Cluster
Using Python.

ES-Hadoop Supported by clusters in all the three modes. For details about
the commands used for each mode, see Using ES-Hadoop to
Read and Write Data in Elasticsearch Through Hive.

4.2 Accessing an Elasticsearch Cluster
Elasticsearch clusters have built-in Kibana and Cerebro components. You can
quickly access an Elasticsearch cluster through Kibana and Cerebro.

Access a Cluster Through Kibana
1. Log in to the CSS management console.
2. On the Clusters page, locate the target cluster and click Access Kibana in the

Operation column to go to the Kibana login page.
– Non-security cluster: The Kibana console is displayed.
– Security cluster: Enter the username and password on the login page and

click Log In to go to the Kibana console. The default username is admin
and the password is the one specified during cluster creation.

3. After the login is successful, you can access clusters through Kibana.

Accessing a Cluster Through Cerebro
1. Log in to the CSS management console.

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

2. On the Clusters page, locate the target cluster and click More > Cerebro in
the Operation column to go to the Cerebro login page.
– Non-security cluster: Click the cluster name on the Cerebro login page to

go to the Cerebro console.
– Security cluster: Click the cluster name on the Cerebro login page, enter

the username and password, and click Authenticate to go to the Cerebro
console. The default username is admin and the password is the one
specified during cluster creation.

3. After the login is successful, you can access clusters through Cerebro.

4.3 Accessing a Cluster Using cURL Commands
If the CSS cluster and ECS are in the same VPC, you can run cURL commands on
the ECS to directly access the Elasticsearch cluster. This method is mainly used to
check whether the client that accesses the cluster can be connected to
Elasticsearch nodes.

Prerequisites
● The CSS cluster is available.
● An ECS that meets the following requirements is available:

– The ECS and the CSS cluster must be in the same VPC to ensure network
connectivity.

– The security group of the ECS must be the same as that of the CSS
cluster.
If they are different, change the ECS security group, or configure the
inbound and outbound rules of the group to allow access from all the
security groups of the cluster. For details, see Configuring Security
Group Rules.

For details about how to use the ECS, see ECS Hands-On Tutorials.

Procedure
1. Obtain the private network address of the cluster. It is used to access the

cluster.

a. In the navigation pane on the left, choose Clusters.
b. In the cluster list, select a cluster, and obtain and record its Private

Network Address. Format: <host>:<port> or
<host>:<port>,<host>:<port>.
If the cluster has only one node, the IP address and port number of only
one node are displayed, for example, 10.62.179.32:9200. If the cluster
has multiple nodes, the IP addresses and port numbers of all nodes are
displayed, for example, 10.62.179.32:9200,10.62.179.33:9200.

2. Run one of the following commands on the ECS to access the cluster. The
access command varies according to the security mode of the cluster.
– Cluster in non-security mode

curl "http://<host>:<port>"

– Cluster in security mode + HTTP

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

https://support.huaweicloud.com/intl/en-us/usermanual-ecs/en-us_topic_0030878383.html
https://support.huaweicloud.com/intl/en-us/usermanual-ecs/en-us_topic_0030878383.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_02_0009.html

curl -u <user>:<password> "http://<host>:<port>"

– Cluster in security mode + HTTPS
curl -u <user>:<password> -k "https://<host>:<port>"

Table 4-2 Variables

Variable Description

<host> IP address of each node in the cluster. If the cluster
contains multiple nodes, there will be multiple IP
addresses. You can use any of them.

<port> Port number for accessing a cluster node. Generally, the
port number is 9200.

<user> Username for accessing the cluster.

<password> Password of the user.
If the password contains special characters, enclose the
username and password in double quotation marks, for
example, curl -u "user:password!" "http://
<host>:<port>".

An access example is as follows:
curl "http://10.62.176.32:9200"

Information similar to the following is displayed:
HTTP/1.1 200 OK
content-type: application/json; charset=UTF-8
content-length: 513

{
 "name" : "xxx-1",
 "cluster_name" : "xxx",
 "cluster_uuid" : "xxx_uuid",
 "version" : {
 "number" : "7.10.2",
 "build_flavor" : "oss",
 "build_type" : "tar",
 "build_hash" : "unknown",
 "build_date" : "unknown",
 "build_snapshot" : true,
 "lucene_version" : "8.7.0",
 "minimum_wire_compatibility_version" : "6.7.0",
 "minimum_index_compatibility_version" : "6.0.0-beta1"
 },
 "tagline" : "You Know, for Search"
}

NO TE

For more commands, see the Elasticsearch documentation.

4.4 Accessing a Cluster Using Java

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

https://www.elastic.co/guide/en/elasticsearch/reference/current/rest-apis.html?spm=a2c4g.11186623.0.0.18211315kMUlbd

4.4.1 Accessing a Cluster Through the Rest High Level Client
Elasticsearch provides SDK (Rest High Level Client) for connecting to a cluster. This
client encapsulates Elasticsearch APIs. You only need to construct required
structures to access the Elasticsearch cluster. For details about how to use the Rest
Client, see the official document at https://www.elastic.co/guide/en/
elasticsearch/client/java-api-client/master/index.html.

This section describes how to use the Rest High Level Client to access the CSS
cluster. The Rest High Level Client can be connected to the cluster in any of the
following ways:

● Connecting to a Non-Security Cluster Through the Rest High Level Client:
applicable to clusters in non-security mode

● Connecting to a Security Cluster Through Rest High Level Client (Without
Security Certificates): applicable to clusters in security mode+HTTP, and to
clusters in security mode+HTTPS (without using certificates)

● Connecting to a Security Cluster Through Rest High Level Client (With
Security Certificates): applicable to clusters in security mode+HTTPS

Precautions

You are advised to use the Rest High Level Client version that matches the
Elasticsearch version. For example, use Rest High Level Client 7.6.2 to access the
Elasticsearch cluster 7.6.2. If your Java Rest High Level Client version is later than
the Elasticsearch cluster and incompatible with a few requests, you can use
RestHighLevelClient.getLowLevelClient() to obtain Low Level Client and
customize the Elasticsearch request content.

Prerequisites
● The CSS cluster is available.

● Ensure that the server running Java can communicate with the CSS cluster.

● Install JDK 1.8 on the server. You can download JDK 1.8 from: https://
www.oracle.com/technetwork/java/javase/downloads/jdk8-
downloads-2133151.html

● Declare Java dependencies.

7.6.2 indicates the version of the Elasticsearch Java client.

– Maven mode:
<dependency>
 <groupId>org.elasticsearch.client</groupId>
 <artifactId>elasticsearch-rest-high-level-client</artifactId>
 <version>7.6.2</version>
</dependency>
<dependency>
 <groupId>org.elasticsearch</groupId>
 <artifactId>elasticsearch</artifactId>
 <version>7.6.2</version>
</dependency>

– Gradle mode:
compile group: 'org.elasticsearch.client', name: 'elasticsearch-rest-high-level-client', version: '7.6.2'

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

https://www.elastic.co/guide/en/elasticsearch/client/java-api-client/master/index.html
https://www.elastic.co/guide/en/elasticsearch/client/java-api-client/master/index.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

Connecting to a Non-Security Cluster Through the Rest High Level Client
You can use the Rest High Level Client to connect to a non-security cluster and
check whether the test index exists. The sample code is as follows:

import org.apache.http.HttpHost;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestClientBuilder;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.client.indices.GetIndexRequest;

import java.io.IOException;
import java.util.Arrays;
import java.util.List;

/**
* Use Rest Hive Level to connect to a non-security cluster.
 */
public class Main {
 public static void main(String[] args) throws IOException {
 List<String> host = Arrays.asList("x.x.x.x", "x.x.x.x");
 RestClientBuilder builder = RestClient.builder(constructHttpHosts(host, 9200, "http"));
 final RestHighLevelClient client = new RestHighLevelClient(builder);
 GetIndexRequest indexRequest = new GetIndexRequest("test");
 boolean exists = client.indices().exists(indexRequest, RequestOptions.DEFAULT);
 System.out.println(exists);
 client.close();
 }

 /**
 * Use the constructHttpHosts function to convert the node IP address list of the host cluster.
 */
 public static HttpHost[] constructHttpHosts(List<String> host, int port, String protocol) {
 return host.stream().map(p -> new HttpHost(p, port, protocol)).toArray(HttpHost[]::new);
 }
}

host indicates the IP address list of each node in the cluster. If there are multiple
IP addresses, separate them with commas (,). test indicates the index name to be
queried.

Connecting to a Security Cluster Through Rest High Level Client (Without
Security Certificates)

You can connect to a cluster in security mode+HTTP or a cluster in security mode
+ HTTPS (without using certificates).

The sample code is as follows:

import org.apache.http.HttpHost;
import org.apache.http.auth.AuthScope;
import org.apache.http.auth.UsernamePasswordCredentials;
import org.apache.http.client.CredentialsProvider;
import org.apache.http.impl.client.BasicCredentialsProvider;
import org.apache.http.impl.nio.client.HttpAsyncClientBuilder;
import org.apache.http.nio.conn.ssl.SSLIOSessionStrategy;
import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;
import org.elasticsearch.action.admin.cluster.health.ClusterHealthRequest;
import org.elasticsearch.action.admin.cluster.health.ClusterHealthResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestClientBuilder;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.client.indices.GetIndexRequest;

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

import org.elasticsearch.common.Nullable;

import java.io.IOException;
import java.security.KeyManagementException;
import java.security.NoSuchAlgorithmException;
import java.security.SecureRandom;
import java.security.cert.CertificateException;
import java.security.cert.X509Certificate;
import java.util.Arrays;
import java.util.List;
import java.util.Objects;

import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.SSLContext;
import javax.net.ssl.SSLSession;
import javax.net.ssl.TrustManager;
import javax.net.ssl.X509TrustManager;

/**
* Connect to a security cluster through Rest High Level (without using certificates).
 */
public class Main {
 /**
* Create a class for the client. Define the create function.
 */
 public static RestHighLevelClient create(List<String> host, int port, String protocol, int connectTimeout,
int connectionRequestTimeout, int socketTimeout, String username, String password) throws IOException{
 final CredentialsProvider credentialsProvider = new BasicCredentialsProvider();
 credentialsProvider.setCredentials(AuthScope.ANY, new UsernamePasswordCredentials(username,
password));
 SSLContext sc = null;
 try {
 sc = SSLContext.getInstance("SSL");
 sc.init(null, trustAllCerts, new SecureRandom());
 } catch (KeyManagementException | NoSuchAlgorithmException e) {
 e.printStackTrace();
 }
 SSLIOSessionStrategy sessionStrategy = new SSLIOSessionStrategy(sc, new NullHostNameVerifier());
 SecuredHttpClientConfigCallback httpClientConfigCallback = new
SecuredHttpClientConfigCallback(sessionStrategy,
 credentialsProvider);

 RestClientBuilder builder = RestClient.builder(constructHttpHosts(host, port, protocol))
 .setRequestConfigCallback(requestConfig -> requestConfig.setConnectTimeout(connectTimeout)
 .setConnectionRequestTimeout(connectionRequestTimeout)
 .setSocketTimeout(socketTimeout))
 .setHttpClientConfigCallback(httpClientConfigCallback);
 final RestHighLevelClient client = new RestHighLevelClient(builder);
 logger.info("es rest client build success {} ", client);

 ClusterHealthRequest request = new ClusterHealthRequest();
 ClusterHealthResponse response = client.cluster().health(request, RequestOptions.DEFAULT);
 logger.info("es rest client health response {} ", response);
 return client;
 }

 /**
 * Use the constructHttpHosts function to convert the node IP address list of the host cluster.
 */
 public static HttpHost[] constructHttpHosts(List<String> host, int port, String protocol) {
 return host.stream().map(p -> new HttpHost(p, port, protocol)).toArray(HttpHost[]::new);
 }

 /**
 * Configure trustAllCerts to ignore the certificate configuration.
 */
 public static TrustManager[] trustAllCerts = new TrustManager[] {
 new X509TrustManager() {

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

 @Override
 public void checkClientTrusted(X509Certificate[] chain, String authType) throws CertificateException
{
 }

 @Override
 public void checkServerTrusted(X509Certificate[] chain, String authType) throws
CertificateException {
 }

 @Override
 public X509Certificate[] getAcceptedIssuers() {
 return null;
 }
 }
 };

 private static final Logger logger = LogManager.getLogger(Main.class);

 static class SecuredHttpClientConfigCallback implements RestClientBuilder.HttpClientConfigCallback {
 @Nullable
 private final CredentialsProvider credentialsProvider;
 /**
 * The {@link SSLIOSessionStrategy} for all requests to enable SSL / TLS encryption.
 */
 private final SSLIOSessionStrategy sslStrategy;
 /**
 * Create a new {@link SecuredHttpClientConfigCallback}.
 *
 * @param credentialsProvider The credential provider, if a username/password have been supplied
 * @param sslStrategy The SSL strategy, if SSL / TLS have been supplied
 * @throws NullPointerException if {@code sslStrategy} is {@code null}
 */
 SecuredHttpClientConfigCallback(final SSLIOSessionStrategy sslStrategy,
 @Nullable final CredentialsProvider credentialsProvider) {
 this.sslStrategy = Objects.requireNonNull(sslStrategy);
 this.credentialsProvider = credentialsProvider;
 }
 /**
 * Get the {@link CredentialsProvider} that will be added to the HTTP client.
 *
 * @return Can be {@code null}.
 */
 @Nullable
 CredentialsProvider getCredentialsProvider() {
 return credentialsProvider;
 }
 /**
 * Get the {@link SSLIOSessionStrategy} that will be added to the HTTP client.
 *
 * @return Never {@code null}.
 */
 SSLIOSessionStrategy getSSLStrategy() {
 return sslStrategy;
 }
 /**
 * Sets the {@linkplain HttpAsyncClientBuilder#setDefaultCredentialsProvider(CredentialsProvider)
credential provider},
 *
 * @param httpClientBuilder The client to configure.
 * @return Always {@code httpClientBuilder}.
 */
 @Override
 public HttpAsyncClientBuilder customizeHttpClient(final HttpAsyncClientBuilder httpClientBuilder) {
 // enable SSL / TLS
 httpClientBuilder.setSSLStrategy(sslStrategy);
 // enable user authentication
 if (credentialsProvider != null) {
 httpClientBuilder.setDefaultCredentialsProvider(credentialsProvider);

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

 }
 return httpClientBuilder;
 }
 }

 public static class NullHostNameVerifier implements HostnameVerifier {
 @Override
 public boolean verify(String arg0, SSLSession arg1) {
 return true;
 }
 }

 /**
* The following is an example of the main function. Call the create function to create a client and check
whether the test index exists.
 */
 public static void main(String[] args) throws IOException {
 RestHighLevelClient client = create(Arrays.asList("x.x.x.x", "x.x.x.x"), 9200, "https", 1000, 1000, 1000,
"username", "password");
 GetIndexRequest indexRequest = new GetIndexRequest("test");
 boolean exists = client.indices().exists(indexRequest, RequestOptions.DEFAULT);
 System.out.println(exists);
 client.close();
 }
}

Table 4-3 Variables

Parameter Description

host List of the IP addresses of Elasticsearch
nodes (or independent Client node).
Multiple IP addresses are separated
using commas (,).

port Access port of the Elasticsearch cluster.
The default value is 9200.

protocol Connection protocol, which can be
http or https.

connectTimeout Socket connection timeout period.

connectionRequestTimeout Timeout period of a socket connection
request.

socketTimeout Timeout period of a socket request.

username Username for accessing the cluster.

password Password of the user.

Connecting to a Security Cluster Through Rest High Level Client (With
Security Certificates)

You can use a security certificate to connect to a cluster in security mode + HTTPS.

1. Obtain the security certificate CloudSearchService.cer.

a. Log in to the CSS management console.

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

b. In the navigation pane, choose Clusters. The cluster list is displayed.
c. Click the name of a cluster to go to the cluster details page.
d. On the Configuration page, click Download Certificate next to HTTPS

Access.

Figure 4-1 Downloading a certificate

2. Convert the security certificate CloudSearchService.cer. Upload the
downloaded security certificate to the client and use keytool to convert
the .cer certificate into a .jks certificate that can be read by Java.
– In Linux, run the following command to convert the certificate:

keytool -import -alias newname -keystore ./truststore.jks -file ./CloudSearchService.cer

– In Windows, run the following command to convert the certificate:
keytool -import -alias newname -keystore .\truststore.jks -file .\CloudSearchService.cer

In the preceding command, newname indicates the user-defined certificate
name.
After this command is executed, you will be prompted to set the certificate
password and confirm the password. Securely store the password. It will be
used for accessing the cluster.

3. Access the cluster. The sample code is as follows:
import org.apache.http.HttpHost;
import org.apache.http.auth.AuthScope;

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

import org.apache.http.auth.UsernamePasswordCredentials;
import org.apache.http.client.CredentialsProvider;
import org.apache.http.conn.ssl.NoopHostnameVerifier;
import org.apache.http.impl.client.BasicCredentialsProvider;
import org.apache.http.impl.nio.client.HttpAsyncClientBuilder;
import org.apache.http.nio.conn.ssl.SSLIOSessionStrategy;
import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;
import org.elasticsearch.action.admin.cluster.health.ClusterHealthRequest;
import org.elasticsearch.action.admin.cluster.health.ClusterHealthResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestClientBuilder;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.client.indices.GetIndexRequest;
import org.elasticsearch.common.Nullable;

import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.security.KeyStore;
import java.security.SecureRandom;
import java.security.cert.CertificateException;
import java.security.cert.X509Certificate;
import java.util.Arrays;
import java.util.List;
import java.util.Objects;

import javax.net.ssl.SSLContext;
import javax.net.ssl.TrustManager;
import javax.net.ssl.TrustManagerFactory;
import javax.net.ssl.X509TrustManager;

/**
* Use Rest Hive Level to connect to a security cluster (using an HTTPS certificate).
 */
public class Main {
 public static RestHighLevelClient create(List<String> host, int port, String protocol, int
connectTimeout, int connectionRequestTimeout, int socketTimeout, String username, String password,
String cerFilePath,
 String cerPassword) throws IOException {

 final CredentialsProvider credentialsProvider = new BasicCredentialsProvider();
 credentialsProvider.setCredentials(AuthScope.ANY, new
UsernamePasswordCredentials(username, password));
 SSLContext sc = null;
 try {
 TrustManager[] tm = {new MyX509TrustManager(cerFilePath, cerPassword)};
 sc = SSLContext.getInstance("SSL", "SunJSSE");
 //You can also use SSLContext sslContext = SSLContext.getInstance("TLSv1.2");
 sc.init(null, tm, new SecureRandom());
 } catch (Exception e) {
 e.printStackTrace();
 }

 SSLIOSessionStrategy sessionStrategy = new SSLIOSessionStrategy(sc, new
NoopHostnameVerifier());
 SecuredHttpClientConfigCallback httpClientConfigCallback = new
SecuredHttpClientConfigCallback(sessionStrategy,
 credentialsProvider);

 RestClientBuilder builder = RestClient.builder(constructHttpHosts(host, port, protocol))
 .setRequestConfigCallback(requestConfig ->
requestConfig.setConnectTimeout(connectTimeout)
 .setConnectionRequestTimeout(connectionRequestTimeout)
 .setSocketTimeout(socketTimeout))
 .setHttpClientConfigCallback(httpClientConfigCallback);
 final RestHighLevelClient client = new RestHighLevelClient(builder);

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

 logger.info("es rest client build success {} ", client);

 ClusterHealthRequest request = new ClusterHealthRequest();
 ClusterHealthResponse response = client.cluster().health(request, RequestOptions.DEFAULT);
 logger.info("es rest client health response {} ", response);
 return client;
 }

 /**
 * Use the constructHttpHosts function to convert the node IP address list of the host cluster.
 */
 public static HttpHost[] constructHttpHosts(List<String> host, int port, String protocol) {
 return host.stream().map(p -> new HttpHost(p, port, protocol)).toArray(HttpHost[]::new);
 }

 /**
 * SecuredHttpClientConfigCallback class definition
 */
 static class SecuredHttpClientConfigCallback implements
RestClientBuilder.HttpClientConfigCallback {
 @Nullable
 private final CredentialsProvider credentialsProvider;

 private final SSLIOSessionStrategy sslStrategy;

 SecuredHttpClientConfigCallback(final SSLIOSessionStrategy sslStrategy,
 @Nullable final CredentialsProvider credentialsProvider) {
 this.sslStrategy = Objects.requireNonNull(sslStrategy);
 this.credentialsProvider = credentialsProvider;
 }

 @Nullable
 CredentialsProvider getCredentialsProvider() {
 return credentialsProvider;
 }

 SSLIOSessionStrategy getSSLStrategy() {
 return sslStrategy;
 }

 @Override
 public HttpAsyncClientBuilder customizeHttpClient(final HttpAsyncClientBuilder
httpClientBuilder) {
 httpClientBuilder.setSSLStrategy(sslStrategy);
 if (credentialsProvider != null) {
 httpClientBuilder.setDefaultCredentialsProvider(credentialsProvider);
 }
 return httpClientBuilder;
 }
 }

 private static final Logger logger = LogManager.getLogger(Main.class);

 public static class MyX509TrustManager implements X509TrustManager {
 X509TrustManager sunJSSEX509TrustManager;

 MyX509TrustManager(String cerFilePath, String cerPassword) throws Exception {
 File file = new File(cerFilePath);
 if (!file.isFile()) {
 throw new Exception("Wrong Certification Path");
 }
 System.out.println("Loading KeyStore " + file + "...");
 InputStream in = new FileInputStream(file);
 KeyStore ks = KeyStore.getInstance("JKS");
 ks.load(in, cerPassword.toCharArray());
 TrustManagerFactory tmf = TrustManagerFactory.getInstance("SunX509", "SunJSSE");
 tmf.init(ks);
 TrustManager[] tms = tmf.getTrustManagers();
 for (TrustManager tm : tms) {

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

 if (tm instanceof X509TrustManager) {
 sunJSSEX509TrustManager = (X509TrustManager) tm;
 return;
 }
 }
 throw new Exception("Couldn't initialize");
 }

 @Override
 public void checkClientTrusted(X509Certificate[] chain, String authType) throws
CertificateException {

 }

 @Override
 public void checkServerTrusted(X509Certificate[] chain, String authType) throws
CertificateException {

 }

 @Override
 public X509Certificate[] getAcceptedIssuers() {
 return new X509Certificate[0];
 }
 }

 /**
* The following is an example of the main function. Call the create function to create a client and
check whether the test index exists.
 */
 public static void main(String[] args) throws IOException {
 RestHighLevelClient client = create(Arrays.asList("xxx.xxx.xxx.xxx", "xxx.xxx.xxx.xxx"), 9200,
"https", 1000, 1000, 1000, "username", "password", "cerFilePath", "cerPassword");
 GetIndexRequest indexRequest = new GetIndexRequest("test");
 boolean exists = client.indices().exists(indexRequest, RequestOptions.DEFAULT);
 System.out.println(exists);
 client.close();
 }
}

Table 4-4 Function parameters

Name Description

host List of the IP addresses of
Elasticsearch nodes (or independent
Client node). Multiple IP addresses
are separated using commas (,).

port Access port of the Elasticsearch
cluster. The default value is 9200.

protocol Connection protocol. Set this
parameter to https.

connectTimeout Socket connection timeout period.

connectionRequestTimeout Timeout period of a socket
connection request.

socketTimeout Timeout period of a socket request.

username Username for accessing the cluster.

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

Name Description

password Password of the user.

cerFilePath Certificate path.

cerPassword Certificate password.

4.4.2 Accessing a Cluster Through the Rest Low Level Client
The high-level client is encapsulated based on the low-level client. If the method
calls (such as .search and .bulk) in the high-level client cannot meet the
requirements or has compatibility issues, you can use the low-level client. You can
even use HighLevelClient.getLowLevelClient() to directly obtain a low-level
client. A low-level client allows you to customize the request structure, which is
more flexible and supports all the request formats of Elasticsearch, such as GET,
POST, DELETE, and HEAD.

This section describes how to use the Rest Low Level Client to access the CSS
cluster. The methods are as follows. For each method, you can directly create a
REST low-level client, or create a high-level client and then invoke
getLowLevelClient() to obtain a low-level client.

● Connecting to a Non-Security Cluster Through the Rest Low Level Client:
applicable to clusters in non-security mode

● Connecting to a Security Cluster Through Rest Low Level Client (Without
Security Certificates): applicable to clusters in security mode+HTTP, and to
clusters in security mode+HTTPS (without using certificates)

● Connecting to a Security Cluster Through Rest Low Level Client (With
Security Certificates): applicable to clusters in security mode+HTTPS

Precautions
You are advised to use the Rest Low Level Client version that matches the
Elasticsearch version. For example, use Rest Low Level Client 7.6.2 to access the
Elasticsearch cluster 7.6.2.

Prerequisites
● The CSS cluster is available.
● Ensure that the server running Java can communicate with the CSS cluster.
● Install JDK 1.8 on the server. You can download JDK 1.8 from: https://

www.oracle.com/technetwork/java/javase/downloads/jdk8-
downloads-2133151.html

● Declare the Apache version in Maven mode. The following code uses version
7.6.2 as an example.
7.6.2 indicates the version of the Elasticsearch Java client.
<dependency>
 <groupId>org.elasticsearch.client</groupId>
 <artifactId>elasticsearch-rest-client</artifactId>
 <version>7.6.2</version>
</dependency>

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 79

https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

<dependency>
 <groupId>org.elasticsearch</groupId>
 <artifactId>elasticsearch</artifactId>
 <version>7.6.2</version>
</dependency>

Connecting to a Non-Security Cluster Through the Rest Low Level Client
● Method 1: Directly create a Rest Low Level Client.

import org.apache.http.HttpHost;
import org.elasticsearch.client.Request;
import org.elasticsearch.client.Response;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestClientBuilder;

import java.io.IOException;
import java.util.Arrays;
import java.util.List;

public class Main {

 public static void main(String[] args) throws IOException {
 List<String> host = Arrays.asList("xxx.xxx.xxx.xxx", "xxx.xxx.xxx.xxx");
 RestClientBuilder builder = RestClient.builder(constructHttpHosts(host, 9200, "http"));
 /**
 * Create a Rest Low Level Client.
 */
 RestClient lowLevelClient = builder.build();
 /**
 * Check whether the test index exists. If the index exists, 200 is returned. If the index does not
exist, 404 is returned.
 */
 Request request = new Request("HEAD", "/test");
 Response response = lowLevelClient.performRequest(request);
 System.out.println(response.getStatusLine().getStatusCode());
 lowLevelClient.close();
 }

 /**
 * Use the constructHttpHosts function to convert the node IP address list of the host cluster.
 */
 public static HttpHost[] constructHttpHosts(List<String> host, int port, String protocol) {
 return host.stream().map(p -> new HttpHost(p, port, protocol)).toArray(HttpHost[]::new);
 }
}

● Method 2: Create a high-level client and then call getLowLevelClient() to
obtain a low-level client.
import org.apache.http.HttpHost;
import org.elasticsearch.client.Request;
import org.elasticsearch.client.Response;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestClientBuilder;
import org.elasticsearch.client.RestHighLevelClient;

import java.io.IOException;
import java.util.Arrays;
import java.util.List;

public class Main {

 public static void main(String[] args) throws IOException {
 List<String> host = Arrays.asList("xxx.xxx.xxx.xxx", "xxx.xxx.xxx.xxx");
 RestClientBuilder builder = RestClient.builder(constructHttpHosts(host, 9200, "http"));
 final RestHighLevelClient restHighLevelClient = new RestHighLevelClient(builder);
 /**
 * Create a high-level client and then call getLowLevelClient() to obtain a low-level client.
The code differs from the client creation code only in the following line:
 */

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

 final RestClient lowLevelClient = restHighLevelClient.getLowLevelClient();
 /**
 * Check whether the test index exists. If the index exists, 200 is returned. If the index does not
exist, 404 is returned.
 */
 Request request = new Request("HEAD", "/test");
 Response response = lowLevelClient.performRequest(request);
 System.out.println(response.getStatusLine().getStatusCode());
 lowLevelClient.close();
 }

 /**
 * Use the constructHttpHosts function to convert the node IP address list of the host cluster.
 */
 public static HttpHost[] constructHttpHosts(List<String> host, int port, String protocol) {
 return host.stream().map(p -> new HttpHost(p, port, protocol)).toArray(HttpHost[]::new);
 }
}

host indicates the IP address list of each node in the cluster. If there are multiple
IP addresses, separate them with commas (,). test indicates the index name to be
queried.

Connecting to a Security Cluster Through Rest Low Level Client (Without
Security Certificates)

● Method 1: Directly create a Rest Low Level Client.
import org.apache.http.HttpHost;
import org.apache.http.HttpResponse;
import org.apache.http.auth.AuthScope;
import org.apache.http.auth.UsernamePasswordCredentials;
import org.apache.http.client.CredentialsProvider;
import org.apache.http.impl.client.BasicCredentialsProvider;
import org.apache.http.impl.client.DefaultConnectionKeepAliveStrategy;
import org.apache.http.impl.nio.client.HttpAsyncClientBuilder;
import org.apache.http.nio.conn.ssl.SSLIOSessionStrategy;
import org.apache.http.protocol.HttpContext;
import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;
import org.elasticsearch.client.Request;
import org.elasticsearch.client.Response;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestClientBuilder;
import org.elasticsearch.common.Nullable;

import java.io.IOException;
import java.security.KeyManagementException;
import java.security.NoSuchAlgorithmException;
import java.security.SecureRandom;
import java.security.cert.CertificateException;
import java.security.cert.X509Certificate;
import java.util.Arrays;
import java.util.List;
import java.util.Objects;
import java.util.concurrent.TimeUnit;

import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.SSLContext;
import javax.net.ssl.SSLSession;
import javax.net.ssl.TrustManager;import javax.net.ssl.X509TrustManager;

public class Main {

 /**
 * Create a class for the client. Define the create function.
 */
 public static RestClient create(List<String> host, int port, String protocol, int connectTimeout, int
connectionRequestTimeout, int socketTimeout, String username, String password) throws

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

IOException {
 final CredentialsProvider credentialsProvider = new BasicCredentialsProvider();
 credentialsProvider.setCredentials(AuthScope.ANY, new
UsernamePasswordCredentials(username, password));
 SSLContext sc = null;
 try {
 sc = SSLContext.getInstance("SSL");
 sc.init(null, trustAllCerts, new SecureRandom());
 } catch (KeyManagementException | NoSuchAlgorithmException e) {
 e.printStackTrace();
 }
 SSLIOSessionStrategy sessionStrategy = new SSLIOSessionStrategy(sc, new
NullHostNameVerifier());
 SecuredHttpClientConfigCallback httpClientConfigCallback = new
SecuredHttpClientConfigCallback(sessionStrategy,
 credentialsProvider);

 RestClientBuilder builder = RestClient.builder(constructHttpHosts(host, port, protocol))
 .setRequestConfigCallback(requestConfig ->
requestConfig.setConnectTimeout(connectTimeout)
 .setConnectionRequestTimeout(connectionRequestTimeout)
 .setSocketTimeout(socketTimeout))
 .setHttpClientConfigCallback(httpClientConfigCallback);
 final RestClient client = builder.build();
 logger.info("es rest client build success {} ", client);
 return client;
 }

 /**
 * Use the constructHttpHosts function to convert the node IP address list of the host cluster.
 */
 public static HttpHost[] constructHttpHosts(List<String> host, int port, String protocol) {
 return host.stream().map(p -> new HttpHost(p, port, protocol)).toArray(HttpHost[]::new);
 }

 /**
 * Configure trustAllCerts to ignore the certificate configuration.
 */
 public static TrustManager[] trustAllCerts = new TrustManager[] {
 new X509TrustManager() {
 @Override
 public void checkClientTrusted(X509Certificate[] chain, String authType) throws
CertificateException {
 }

 @Override
 public void checkServerTrusted(X509Certificate[] chain, String authType) throws
CertificateException {
 }

 @Override
 public X509Certificate[] getAcceptedIssuers() {
 return null;
 }
 }
 };

 /**
* The CustomConnectionKeepAliveStrategy function is used to set the connection keepalive time when
there are a large number of short connections or when the number of data requests is small.
 */
 public static class CustomConnectionKeepAliveStrategy extends
DefaultConnectionKeepAliveStrategy {
 public static final CustomConnectionKeepAliveStrategy INSTANCE = new
CustomConnectionKeepAliveStrategy();

 private CustomConnectionKeepAliveStrategy() {
 super();
 }

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

 /**
 * Maximum keep alive time (minutes)
 * The default value is 10 minutes. You can set it based on the number of TCP connections in
TIME_WAIT state. If there are too many TCP connections, you can increase the value.
 */
 private final long MAX_KEEP_ALIVE_MINUTES = 10;

 @Override
 public long getKeepAliveDuration(HttpResponse response, HttpContext context) {
 long keepAliveDuration = super.getKeepAliveDuration(response, context);
 // <0 indicates that the keepalive period is unlimited.
 // Change the period from unlimited to a default period.
 if (keepAliveDuration < 0) {
 return TimeUnit.MINUTES.toMillis(MAX_KEEP_ALIVE_MINUTES);
 }
 return keepAliveDuration;
 }
 }

 private static final Logger logger = LogManager.getLogger(Main.class);

 static class SecuredHttpClientConfigCallback implements
RestClientBuilder.HttpClientConfigCallback {
 @Nullable
 private final CredentialsProvider credentialsProvider;
 /**
 * The {@link SSLIOSessionStrategy} for all requests to enable SSL / TLS encryption.
 */
 private final SSLIOSessionStrategy sslStrategy;
 /**
 * Create a new {@link SecuredHttpClientConfigCallback}.
 *
 * @param credentialsProvider The credential provider, if a username/password have been
supplied
 * @param sslStrategy The SSL strategy, if SSL / TLS have been supplied
 * @throws NullPointerException if {@code sslStrategy} is {@code null}
 */
 SecuredHttpClientConfigCallback(final SSLIOSessionStrategy sslStrategy,
 @Nullable final CredentialsProvider credentialsProvider) {
 this.sslStrategy = Objects.requireNonNull(sslStrategy);
 this.credentialsProvider = credentialsProvider;
 }
 /**
 * Get the {@link CredentialsProvider} that will be added to the HTTP client.
 *
 * @return Can be {@code null}.
 */
 @Nullable
 CredentialsProvider getCredentialsProvider() {
 return credentialsProvider;
 }
 /**
 * Get the {@link SSLIOSessionStrategy} that will be added to the HTTP client.
 *
 * @return Never {@code null}.
 */
 SSLIOSessionStrategy getSSLStrategy() {
 return sslStrategy;
 }
 /**
 * Sets the {@linkplain
HttpAsyncClientBuilder#setDefaultCredentialsProvider(CredentialsProvider) credential provider},
 *
 * @param httpClientBuilder The client to configure.
 * @return Always {@code httpClientBuilder}.
 */
 @Override
 public HttpAsyncClientBuilder customizeHttpClient(final HttpAsyncClientBuilder

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

httpClientBuilder) {
 // enable SSL / TLS
 httpClientBuilder.setSSLStrategy(sslStrategy);
 // enable user authentication
 if (credentialsProvider != null) {
 httpClientBuilder.setDefaultCredentialsProvider(credentialsProvider);
 }
 return httpClientBuilder;
 }
 }

 public static class NullHostNameVerifier implements HostnameVerifier {
 @Override
 public boolean verify(String arg0, SSLSession arg1) {
 return true;
 }
 }

 /**
 * The following is an example of the main function. Call the create function to create a Rest Low
Level Client and check whether the test index exists.
 */
 public static void main(String[] args) throws IOException {
 RestClient lowLevelClient = create(Arrays.asList("xxx.xxx.xxx.xxx", "xxx.xxx.xxx.xxx"), 9200, "http",
1000, 1000, 1000, "username", "password");
 Request request = new Request("HEAD", "/test");
 Response response = lowLevelClient.performRequest(request);
 System.out.println(response.getStatusLine().getStatusCode());
 lowLevelClient.close();
 }
}

● Method 2: Create a high-level client and then call getLowLevelClient() to
obtain a low-level client.
import org.apache.http.HttpHost;
import org.apache.http.HttpResponse;
import org.apache.http.auth.AuthScope;
import org.apache.http.auth.UsernamePasswordCredentials;
import org.apache.http.client.CredentialsProvider;
import org.apache.http.impl.client.BasicCredentialsProvider;
import org.apache.http.impl.client.DefaultConnectionKeepAliveStrategy;
import org.apache.http.impl.nio.client.HttpAsyncClientBuilder;
import org.apache.http.nio.conn.ssl.SSLIOSessionStrategy;
import org.apache.http.protocol.HttpContext;
import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;
import org.elasticsearch.client.Request;
import org.elasticsearch.client.Response;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestClientBuilder;
import org.elasticsearch.common.Nullable;

import java.io.IOException;
import java.security.KeyManagementException;
import java.security.NoSuchAlgorithmException;
import java.security.SecureRandom;
import java.security.cert.CertificateException;
import java.security.cert.X509Certificate;
import java.util.Arrays;
import java.util.List;
import java.util.Objects;
import java.util.concurrent.TimeUnit;

import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.SSLContext;
import javax.net.ssl.SSLSession;
import javax.net.ssl.TrustManager;import javax.net.ssl.X509TrustManager;

import org.elasticsearch.client.RestHighLevelClient;

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

public class Main13 {

 /**
 * Create a class for the client. Define the create function.
 */
 public static RestHighLevelClient create(List<String> host, int port, String protocol, int
connectTimeout, int connectionRequestTimeout, int socketTimeout, String username, String
password) throws IOException {

 final CredentialsProvider credentialsProvider = new BasicCredentialsProvider();
 credentialsProvider.setCredentials(AuthScope.ANY, new
UsernamePasswordCredentials(username, password));
 SSLContext sc = null;
 try {
 sc = SSLContext.getInstance("SSL");
 sc.init(null, trustAllCerts, new SecureRandom());
 } catch (KeyManagementException | NoSuchAlgorithmException e) {
 e.printStackTrace();
 }
 SSLIOSessionStrategy sessionStrategy = new SSLIOSessionStrategy(sc, new
NullHostNameVerifier());
 SecuredHttpClientConfigCallback httpClientConfigCallback = new
SecuredHttpClientConfigCallback(sessionStrategy,
 credentialsProvider);

 RestClientBuilder builder = RestClient.builder(constructHttpHosts(host, port, protocol))
 .setRequestConfigCallback(requestConfig ->
requestConfig.setConnectTimeout(connectTimeout)
 .setConnectionRequestTimeout(connectionRequestTimeout)
 .setSocketTimeout(socketTimeout))
 .setHttpClientConfigCallback(httpClientConfigCallback);
 final RestHighLevelClient client = new RestHighLevelClient(builder);
 logger.info("es rest client build success {} ", client);
 return client;
 }

 /**
 * Use the constructHttpHosts function to convert the node IP address list of the host cluster.
 */
 public static HttpHost[] constructHttpHosts(List<String> host, int port, String protocol) {
 return host.stream().map(p -> new HttpHost(p, port, protocol)).toArray(HttpHost[]::new);
 }

 /**
 * Configure trustAllCerts to ignore the certificate configuration.
 */
 public static TrustManager[] trustAllCerts = new TrustManager[] {
 new X509TrustManager() {
 @Override
 public void checkClientTrusted(X509Certificate[] chain, String authType) throws
CertificateException {
 }

 @Override
 public void checkServerTrusted(X509Certificate[] chain, String authType) throws
CertificateException {
 }

 @Override
 public X509Certificate[] getAcceptedIssuers() {
 return null;
 }
 }
 };

 /**
* The CustomConnectionKeepAliveStrategy function is used to set the connection keepalive time when
there are a large number of short connections or when the number of data requests is small.
 */

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

 public static class CustomConnectionKeepAliveStrategy extends
DefaultConnectionKeepAliveStrategy {
 public static final CustomConnectionKeepAliveStrategy INSTANCE = new
CustomConnectionKeepAliveStrategy();

 private CustomConnectionKeepAliveStrategy() {
 super();
 }

 /**
 * Maximum keep alive time (minutes)
 * The default value is 10 minutes. You can set it based on the number of TCP connections in
TIME_WAIT state. If there are too many TCP connections, you can increase the value.
 */
 private final long MAX_KEEP_ALIVE_MINUTES = 10;

 @Override
 public long getKeepAliveDuration(HttpResponse response, HttpContext context) {
 long keepAliveDuration = super.getKeepAliveDuration(response, context);
 // <0 indicates that the keepalive period is unlimited.
 // Change the period from unlimited to a default period.
 if (keepAliveDuration < 0) {
 return TimeUnit.MINUTES.toMillis(MAX_KEEP_ALIVE_MINUTES);
 }
 return keepAliveDuration;
 }
 }

 private static final Logger logger = LogManager.getLogger(Main.class);

 static class SecuredHttpClientConfigCallback implements
RestClientBuilder.HttpClientConfigCallback {
 @Nullable
 private final CredentialsProvider credentialsProvider;
 /**
 * The {@link SSLIOSessionStrategy} for all requests to enable SSL / TLS encryption.
 */
 private final SSLIOSessionStrategy sslStrategy;
 /**
 * Create a new {@link SecuredHttpClientConfigCallback}.
 *
 * @param credentialsProvider The credential provider, if a username/password have been
supplied
 * @param sslStrategy The SSL strategy, if SSL / TLS have been supplied
 * @throws NullPointerException if {@code sslStrategy} is {@code null}
 */
 SecuredHttpClientConfigCallback(final SSLIOSessionStrategy sslStrategy,
 @Nullable final CredentialsProvider credentialsProvider) {
 this.sslStrategy = Objects.requireNonNull(sslStrategy);
 this.credentialsProvider = credentialsProvider;
 }
 /**
 * Get the {@link CredentialsProvider} that will be added to the HTTP client.
 *
 * @return Can be {@code null}.
 */
 @Nullable
 CredentialsProvider getCredentialsProvider() {
 return credentialsProvider;
 }
 /**
 * Get the {@link SSLIOSessionStrategy} that will be added to the HTTP client.
 *
 * @return Never {@code null}.
 */
 SSLIOSessionStrategy getSSLStrategy() {
 return sslStrategy;
 }
 /**

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

 * Sets the {@linkplain
HttpAsyncClientBuilder#setDefaultCredentialsProvider(CredentialsProvider) credential provider},
 *
 * @param httpClientBuilder The client to configure.
 * @return Always {@code httpClientBuilder}.
 */
 @Override
 public HttpAsyncClientBuilder customizeHttpClient(final HttpAsyncClientBuilder
httpClientBuilder) {
 // enable SSL / TLS
 httpClientBuilder.setSSLStrategy(sslStrategy);
 // enable user authentication
 if (credentialsProvider != null) {
 httpClientBuilder.setDefaultCredentialsProvider(credentialsProvider);
 }
 return httpClientBuilder;
 }
 }

 public static class NullHostNameVerifier implements HostnameVerifier {
 @Override
 public boolean verify(String arg0, SSLSession arg1) {
 return true;
 }
 }

 /**
* The following is an example of the main function. Call the create function to create a high-level
client, call the getLowLevelClient() function to obtain a low-level client, and check whether the test
index exists.
 */
 public static void main(String[] args) throws IOException {
 RestHighLevelClient client = create(Arrays.asList("xxx.xxx.xxx.xxx", "xxx.xxx.xxx.xxx"), 9200,
"http", 1000, 1000, 1000, "username", "password");
 RestClient lowLevelClient = client.getLowLevelClient();
 Request request = new Request("HEAD", "test");
 Response response = lowLevelClient.performRequest(request);
 System.out.println(response.getStatusLine().getStatusCode());
 lowLevelClient.close();
 }
}

Table 4-5 Variables

Parameter Description

host List of the IP addresses of Elasticsearch
nodes (or independent Client node).
Multiple IP addresses are separated
using commas (,).

port Access port of the Elasticsearch cluster.
The default value is 9200.

protocol Connection protocol, which can be
http or https.

connectTimeout Socket connection timeout period.

connectionRequestTimeout Timeout period of a socket connection
request.

socketTimeout Timeout period of a socket request.

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 87

Parameter Description

username Username for accessing the cluster.

password Password of the user.

Connecting to a Security Cluster Through Rest Low Level Client (With
Security Certificates)

● Method 1: Directly create a Rest Low Level Client.
import org.apache.http.HttpHost;
import org.apache.http.auth.AuthScope;
import org.apache.http.auth.UsernamePasswordCredentials;
import org.apache.http.client.CredentialsProvider;
import org.apache.http.conn.ssl.NoopHostnameVerifier;
import org.apache.http.impl.client.BasicCredentialsProvider;
import org.apache.http.impl.nio.client.HttpAsyncClientBuilder;
import org.apache.http.nio.conn.ssl.SSLIOSessionStrategy;
import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;
import org.elasticsearch.client.Request;
import org.elasticsearch.client.Response;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestClientBuilder;
import org.elasticsearch.common.Nullable;

import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.security.KeyStore;
import java.security.SecureRandom;
import java.security.cert.CertificateException;
import java.security.cert.X509Certificate;
import java.util.Arrays;
import java.util.List;
import java.util.Objects;

import javax.net.ssl.SSLContext;import javax.net.ssl.TrustManager;
import javax.net.ssl.TrustManagerFactory;
import javax.net.ssl.X509TrustManager;

public class Main13 {

 private static final Logger logger = LogManager.getLogger(Main.class);

 /**
 * Create a class for the client. Define the create function.
 */
 public static RestClient create(List<String> host, int port, String protocol, int connectTimeout, int
connectionRequestTimeout, int socketTimeout, String username, String password, String cerFilePath,
String cerPassword) throws IOException {
 final CredentialsProvider credentialsProvider = new BasicCredentialsProvider();
 credentialsProvider.setCredentials(AuthScope.ANY, new
UsernamePasswordCredentials(username, password));
 SSLContext sc = null;
 try {
 TrustManager[] tm = {new MyX509TrustManager(cerFilePath, cerPassword)};
 sc = SSLContext.getInstance("SSL", "SunJSSE");
 //You can also use SSLContext sslContext = SSLContext.getInstance("TLSv1.2");
 sc.init(null, tm, new SecureRandom());
 } catch (Exception e) {
 e.printStackTrace();
 }

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 88

 SSLIOSessionStrategy sessionStrategy = new SSLIOSessionStrategy(sc, new
NoopHostnameVerifier());
 SecuredHttpClientConfigCallback httpClientConfigCallback = new
SecuredHttpClientConfigCallback(sessionStrategy,
 credentialsProvider);

 RestClientBuilder builder = RestClient.builder(constructHttpHosts(host, port, protocol))
 .setRequestConfigCallback(requestConfig ->
requestConfig.setConnectTimeout(connectTimeout)
 .setConnectionRequestTimeout(connectionRequestTimeout)
 .setSocketTimeout(socketTimeout))
 .setHttpClientConfigCallback(httpClientConfigCallback);
 final RestClient client = builder.build();
 logger.info("es rest client build success {} ", client);
 return client;
 }

 /**
 * Use the constructHttpHosts function to convert the node IP address list of the host cluster.
 */
 public static HttpHost[] constructHttpHosts(List<String> host, int port, String protocol) {
 return host.stream().map(p -> new HttpHost(p, port, protocol)).toArray(HttpHost[]::new);}

 static class SecuredHttpClientConfigCallback implements
RestClientBuilder.HttpClientConfigCallback {
 @Nullable
 private final CredentialsProvider credentialsProvider;

 private final SSLIOSessionStrategy sslStrategy;

 SecuredHttpClientConfigCallback(final SSLIOSessionStrategy sslStrategy,
 @Nullable final CredentialsProvider credentialsProvider) {
 this.sslStrategy = Objects.requireNonNull(sslStrategy);
 this.credentialsProvider = credentialsProvider;
 }

 @Nullable
 CredentialsProvider getCredentialsProvider() {
 return credentialsProvider;
 }

 SSLIOSessionStrategy getSSLStrategy() {
 return sslStrategy;
 }

 @Override
 public HttpAsyncClientBuilder customizeHttpClient(final HttpAsyncClientBuilder
httpClientBuilder) {
 httpClientBuilder.setSSLStrategy(sslStrategy);
 if (credentialsProvider != null) {
 httpClientBuilder.setDefaultCredentialsProvider(credentialsProvider);
 }
 return httpClientBuilder;
 }}

 public static class MyX509TrustManager implements X509TrustManager {
 X509TrustManager sunJSSEX509TrustManager;

 MyX509TrustManager(String cerFilePath, String cerPassword) throws Exception {
 File file = new File(cerFilePath);
 if (!file.isFile()) {
 throw new Exception("Wrong Certification Path");
 }
 System.out.println("Loading KeyStore " + file + "...");
 InputStream in = new FileInputStream(file);
 KeyStore ks = KeyStore.getInstance("JKS");
 ks.load(in, cerPassword.toCharArray());
 TrustManagerFactory tmf = TrustManagerFactory.getInstance("SunX509", "SunJSSE");
 tmf.init(ks);

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 89

 TrustManager[] tms = tmf.getTrustManagers();
 for (TrustManager tm : tms) {
 if (tm instanceof X509TrustManager) {
 sunJSSEX509TrustManager = (X509TrustManager) tm;
 return;
 }
 }
 throw new Exception("Couldn't initialize");
 }

 @Override
 public void checkClientTrusted(X509Certificate[] chain, String authType) throws
CertificateException {

 }

 @Override
 public void checkServerTrusted(X509Certificate[] chain, String authType) throws
CertificateException {

 }

 @Override
 public X509Certificate[] getAcceptedIssuers() {
 return new X509Certificate[0];
 }
 }

 /**
 * The following is an example of the main function. Call the create function to create a Rest Low
Level Client and check whether the test index exists.
 */
 public static void main(String[] args) throws IOException {
 RestClient lowLevelClient = create(Arrays.asList("xxx.xxx.xxx.xxx", "xxx.xxx.xxx.xxx"), 9200,
"https", 1000, 1000, 1000, "username", "password", "cerFilePath", "cerPassword");
 Request request = new Request("HEAD", "test");
 Response response = lowLevelClient.performRequest(request);
 System.out.println(response.getStatusLine().getStatusCode());
 lowLevelClient.close();
 }
}

● Method 2: Create a high-level client and then call getLowLevelClient() to
obtain a low-level client.
import org.apache.http.HttpHost;
import org.apache.http.auth.AuthScope;
import org.apache.http.auth.UsernamePasswordCredentials;
import org.apache.http.client.CredentialsProvider;
import org.apache.http.conn.ssl.NoopHostnameVerifier;
import org.apache.http.impl.client.BasicCredentialsProvider;
import org.apache.http.impl.nio.client.HttpAsyncClientBuilder;
import org.apache.http.nio.conn.ssl.SSLIOSessionStrategy;
import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;
import org.elasticsearch.action.admin.cluster.health.ClusterHealthRequest;
import org.elasticsearch.action.admin.cluster.health.ClusterHealthResponse;
import org.elasticsearch.client.Request;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.Response;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestClientBuilder;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.common.Nullable;

import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.security.KeyStore;
import java.security.SecureRandom;

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 90

import java.security.cert.CertificateException;
import java.security.cert.X509Certificate;
import java.util.Arrays;
import java.util.List;
import java.util.Objects;

import javax.net.ssl.SSLContext;import javax.net.ssl.TrustManager;
import javax.net.ssl.TrustManagerFactory;
import javax.net.ssl.X509TrustManager;

public class Main {

 private static final Logger logger = LogManager.getLogger(Main.class);

 /**
 * Create a class for the client. Define the create function.
 */
 public static RestHighLevelClient create(List<String> host, int port, String protocol, int
connectTimeout, int connectionRequestTimeout, int socketTimeout, String username, String password,
String cerFilePath, String cerPassword) throws IOException {
 final CredentialsProvider credentialsProvider = new BasicCredentialsProvider();
 credentialsProvider.setCredentials(AuthScope.ANY, new
UsernamePasswordCredentials(username, password));
 SSLContext sc = null;
 try {
 TrustManager[] tm = {new MyX509TrustManager(cerFilePath, cerPassword)};
 sc = SSLContext.getInstance("SSL", "SunJSSE");
 //You can also use SSLContext sslContext = SSLContext.getInstance("TLSv1.2");
 sc.init(null, tm, new SecureRandom());
 } catch (Exception e) {
 e.printStackTrace();
 }

 SSLIOSessionStrategy sessionStrategy = new SSLIOSessionStrategy(sc, new
NoopHostnameVerifier());
 SecuredHttpClientConfigCallback httpClientConfigCallback = new
SecuredHttpClientConfigCallback(sessionStrategy,
 credentialsProvider);

 RestClientBuilder builder = RestClient.builder(constructHttpHosts(host, port, protocol))
 .setRequestConfigCallback(requestConfig ->
requestConfig.setConnectTimeout(connectTimeout)
 .setConnectionRequestTimeout(connectionRequestTimeout)
 .setSocketTimeout(socketTimeout))
 .setHttpClientConfigCallback(httpClientConfigCallback);
 final RestHighLevelClient client = new RestHighLevelClient(builder);
 logger.info("es rest client build success {} ", client);

 ClusterHealthRequest request = new ClusterHealthRequest();
 ClusterHealthResponse response = client.cluster().health(request, RequestOptions.DEFAULT);
 logger.info("es rest client health response {} ", response);
 return client;
 }

 /**
 * Use the constructHttpHosts function to convert the node IP address list of the host cluster.
 */
 public static HttpHost[] constructHttpHosts(List<String> host, int port, String protocol) {
 return host.stream().map(p -> new HttpHost(p, port, protocol)).toArray(HttpHost[]::new);}

 static class SecuredHttpClientConfigCallback implements
RestClientBuilder.HttpClientConfigCallback {
 @Nullable
 private final CredentialsProvider credentialsProvider;

 private final SSLIOSessionStrategy sslStrategy;

 SecuredHttpClientConfigCallback(final SSLIOSessionStrategy sslStrategy,
 @Nullable final CredentialsProvider credentialsProvider) {

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

 this.sslStrategy = Objects.requireNonNull(sslStrategy);
 this.credentialsProvider = credentialsProvider;
 }

 @Nullable
 CredentialsProvider getCredentialsProvider() {
 return credentialsProvider;
 }

 SSLIOSessionStrategy getSSLStrategy() {
 return sslStrategy;
 }

 @Override
 public HttpAsyncClientBuilder customizeHttpClient(final HttpAsyncClientBuilder
httpClientBuilder) {
 httpClientBuilder.setSSLStrategy(sslStrategy);
 if (credentialsProvider != null) {
 httpClientBuilder.setDefaultCredentialsProvider(credentialsProvider);
 }
 return httpClientBuilder;
 }}

 public static class MyX509TrustManager implements X509TrustManager {
 X509TrustManager sunJSSEX509TrustManager;

 MyX509TrustManager(String cerFilePath, String cerPassword) throws Exception {
 File file = new File(cerFilePath);
 if (!file.isFile()) {
 throw new Exception("Wrong Certification Path");
 }
 System.out.println("Loading KeyStore " + file + "...");
 InputStream in = new FileInputStream(file);
 KeyStore ks = KeyStore.getInstance("JKS");
 ks.load(in, cerPassword.toCharArray());
 TrustManagerFactory tmf = TrustManagerFactory.getInstance("SunX509", "SunJSSE");
 tmf.init(ks);
 TrustManager[] tms = tmf.getTrustManagers();
 for (TrustManager tm : tms) {
 if (tm instanceof X509TrustManager) {
 sunJSSEX509TrustManager = (X509TrustManager) tm;
 return;
 }
 }
 throw new Exception("Couldn't initialize");
 }

 @Override
 public void checkClientTrusted(X509Certificate[] chain, String authType) throws
CertificateException {

 }

 @Override
 public void checkServerTrusted(X509Certificate[] chain, String authType) throws
CertificateException {

 }

 @Override
 public X509Certificate[] getAcceptedIssuers() {
 return new X509Certificate[0];
 }
 }

 /**
* The following is an example of the main function. Call the create function to create a high-level
client, call the getLowLevelClient() function to obtain a low-level client, and check whether the test
index exists.

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 92

 */
 public static void main(String[] args) throws IOException {
 RestHighLevelClient client = create(Arrays.asList("xxx.xxx.xxx.xxx", "xxx.xxx.xxx.xxx"), 9200,
"https", 1000, 1000, 1000, "username", "password", "cerFilePath", "cerPassword");
 RestClient lowLevelClient = client.getLowLevelClient();
 Request request = new Request("HEAD", "test");
 Response response = lowLevelClient.performRequest(request);
 System.out.println(response.getStatusLine().getStatusCode());
 lowLevelClient.close();
 }
}

Table 4-6 Function parameters

Name Description

host List of the IP addresses of Elasticsearch
nodes (or independent Client node).
Multiple IP addresses are separated
using commas (,).

port Access port of the Elasticsearch cluster.
The default value is 9200.

protocol Connection protocol. Set this
parameter to https.

connectTimeout Socket connection timeout period.

connectionRequestTimeout Timeout period of a socket connection
request.

socketTimeout Timeout period of a socket request.

username Username for accessing the cluster.

password Password of the user.

cerFilePath Certificate path.

cerPassword Certificate password.

4.4.3 Accessing the Cluster Through the Transport Client
You can use Transport Client to access a CSS cluster in non-security mode. If the
cluster is in security mode, you are advised to use Rest High Level Client to access
the Elasticsearch cluster.

Precautions
You are advised to use the Transport Client version that matches the Elasticsearch
version. For example, use Transport Client 7.6.2 to access the Elasticsearch cluster
7.6.2.

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

Prerequisites
● The CSS cluster is available.
● Ensure that the server running Java can communicate with the CSS cluster.
● Install JDK 1.8 on the server. You can download JDK 1.8 from: https://

www.oracle.com/technetwork/java/javase/downloads/jdk8-
downloads-2133151.html

● Declare Java dependencies.
7.6.2 indicates the version of the Elasticsearch Java client.
<dependency>
 <groupId>org.elasticsearch.client</groupId>
 <artifactId>transport</artifactId>
 <version>7.6.2</version>
</dependency>
<dependency>
 <groupId>org.elasticsearch</groupId>
 <artifactId>elasticsearch</artifactId>
 <version>7.6.2</version>
</dependency>

Procedure
The following code is an example of using Transport Client to connect to the
Elasticsearch cluster and check whether the test index exists.

import org.elasticsearch.action.ActionFuture;
import org.elasticsearch.action.admin.indices.exists.indices.IndicesExistsRequest;
import org.elasticsearch.action.admin.indices.exists.indices.IndicesExistsResponse;
import org.elasticsearch.client.transport.TransportClient;
import org.elasticsearch.common.settings.Settings;
import org.elasticsearch.common.transport.TransportAddress;
import org.elasticsearch.transport.client.PreBuiltTransportClient;

import java.net.InetAddress;
import java.net.UnknownHostException;
import java.util.concurrent.ExecutionException;

public class Main {
 public static void main(String[] args) throws ExecutionException, InterruptedException,
UnknownHostException {
 String cluster_name = "xxx";
 String host1 = "x.x.x.x";
 String host2 = "y.y.y.y";
 Settings settings = Settings.builder()
 .put("client.transport.sniff",false)
 .put("cluster.name", cluster_name)
 .build();
 TransportClient client = new PreBuiltTransportClient(settings)
 .addTransportAddress(new TransportAddress(InetAddress.getByName(host1), 9300))
 .addTransportAddress(new TransportAddress(InetAddress.getByName(host2), 9300));
 IndicesExistsRequest indicesExistsRequest = new IndicesExistsRequest("test");
 ActionFuture<IndicesExistsResponse> exists = client.admin().indices().exists(indicesExistsRequest);
 System.out.println(exists.get().isExists());
 }
}

In the preceding information, cluster_name indicates the cluster name, and host1
and host2 indicate the IP addresses of the cluster nodes. You can run the GET
_cat/nodes command to view the IP addresses of the nodes.

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 94

https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

4.4.4 Using Spring Boot to Access a Cluster
You can access a CSS cluster using Spring Boot. Spring Boot can connect to a
cluster in any of the following ways:

● Accessing an HTTP Cluster Through Spring Boot: applicable to clusters in
non-security mode and clusters in Security mode+HTTP

● Using Spring Boot to Access an HTTPS Cluster (Without Using Any
Security Certificate): applicable to clusters in security mode+HTTPS

● Using Spring Boot to Access an HTTPS Cluster (Using a Security
Certificate): applicable to clusters in security mode+HTTPS

NO TE

For details about how to use Spring Boot, see the official document: https://docs.spring.io/
spring-boot/docs/current/reference/htmlsingle/

Precautions
● You are advised to use the Elasticsearch Rest High Level Client version that

matches the Elasticsearch version. For example, use Rest High Level Client
7.10.2 to access the Elasticsearch cluster 7.10.2.

● This section uses Spring Boot 2.5.5 as an example to describe how to connect
Spring Boot to a cluster. The corresponding Spring Data Elasticsearch version
is 4.2.x.

Prerequisites
● The CSS cluster is available.
● Ensure that the server running Java can communicate with the CSS cluster.
● Install JDK 1.8 on the server. You can download JDK 1.8 from: https://

www.oracle.com/technetwork/java/javase/downloads/jdk8-
downloads-2133151.html

● Create a Spring Boot project.
● Declare Java dependencies.

7.10.2 indicates the version of the Elasticsearch Java client.
– Maven mode:

<parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.5.5</version>
</parent>
<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-elasticsearch</artifactId>
 </dependency>
 <dependency>
 <groupId>org.elasticsearch.client</groupId>
 <artifactId>elasticsearch-rest-high-level-client</artifactId>
 <version>7.10.2</version>
 </dependency>
</dependencies>

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

Accessing an HTTP Cluster Through Spring Boot
This scenario applies to clusters in non-security mode or clusters in security mode
+HTTP.

Configuration file:

elasticsearch.url=host1:9200,host2:9200
// You do not need to configure the following two lines for a non-security cluster.
elasticsearch.username=username
elasticsearch.password=password

Table 4-7 Parameter description

Parameter Description

host IP address of the Elasticsearch cluster
node.

username Username for accessing the cluster.

password Password of the user.

Code:

NO TE

● com.xxx indicates the project directory, for example, com.company.project.
● com.xxx.repository is the repository directory, which is defined by extends

org.springframework.data.elasticsearch.repository.ElasticsearchRepository.
package com.xxx.configuration;

import org.elasticsearch.client.RestHighLevelClient;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.elasticsearch.client.ClientConfiguration;
import org.springframework.data.elasticsearch.client.RestClients;
import org.springframework.data.elasticsearch.config.AbstractElasticsearchConfiguration;
import org.springframework.data.elasticsearch.repository.config.EnableElasticsearchRepositories;

@Configuration
@EnableElasticsearchRepositories(basePackages = "com.xxx.repository")
@ComponentScan(basePackages = "com.xxx")
public class Config extends AbstractElasticsearchConfiguration {

 @Value("${elasticsearch.url}")
 public String elasticsearchUrl;

 // You do not need to set the following two parameters for a non-security cluster.
 @Value("${elasticsearch.username}")
 public String elasticsearchUsername;

 @Value("${elasticsearch.password}")
 public String elasticsearchPassword;

 @Override
 @Bean
 public RestHighLevelClient elasticsearchClient() {
 final ClientConfiguration clientConfiguration = ClientConfiguration.builder()
 .connectedTo(StringHostParse(elasticsearchUrl))

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 96

 // For a non-security cluster, there is no need to configure withBasicAuth.
 .withBasicAuth(elasticsearchUsername, elasticsearchPassword)
 .build();

 return RestClients.create(clientConfiguration).rest();
 }

 private String[] StringHostParse(String hostAndPorts) {
 return hostAndPorts.split(",");
 }
}

Using Spring Boot to Access an HTTPS Cluster (Without Using Any Security
Certificate)

You can connect to a cluster in Security mode + HTTPS without using any security
certificate.

Configuration file:

elasticsearch.url=host1:9200,host2:9200
elasticsearch.username=username
elasticsearch.password=password

Table 4-8 Parameter description

Parameter Description

host IP address of the Elasticsearch cluster
node.

username Username for accessing the cluster.

password Password of the user.

Code:

NO TE

● com.xxx indicates the project directory, for example, com.company.project.

● com.xxx.repository is the repository directory, which is defined by extends
org.springframework.data.elasticsearch.repository.ElasticsearchRepository.

package com.xxx.configuration;
import org.elasticsearch.client.RestHighLevelClient;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.elasticsearch.client.ClientConfiguration;
import org.springframework.data.elasticsearch.client.RestClients;
import org.springframework.data.elasticsearch.config.AbstractElasticsearchConfiguration;
import org.springframework.data.elasticsearch.repository.config.EnableElasticsearchRepositories;
import java.security.KeyManagementException;
import java.security.NoSuchAlgorithmException;
import java.security.SecureRandom;
import java.security.cert.CertificateException;
import java.security.cert.X509Certificate;
import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.SSLContext;
import javax.net.ssl.SSLSession;

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 97

import javax.net.ssl.TrustManager;
import javax.net.ssl.X509TrustManager;
@Configuration
@EnableElasticsearchRepositories(basePackages = "com.xxx.repository")
@ComponentScan(basePackages = "com.xxx")
public class Config extends AbstractElasticsearchConfiguration {
 @Value("${elasticsearch.url}")
 public String elasticsearchUrl;
 @Value("${elasticsearch.username}")
 public String elasticsearchUsername;
 @Value("${elasticsearch.password}")
 public String elasticsearchPassword;
 @Override
 @Bean
 public RestHighLevelClient elasticsearchClient() {
 SSLContext sc = null;
 try {
 sc = SSLContext.getInstance("SSL");
 sc.init(null, trustAllCerts, new SecureRandom());
 } catch (KeyManagementException | NoSuchAlgorithmException e) {
 e.printStackTrace();
 }
 final ClientConfiguration clientConfiguration = ClientConfiguration.builder()
 .connectedTo(StringHostParse(elasticsearchUrl))
 .usingSsl(sc, new NullHostNameVerifier())
 .withBasicAuth(elasticsearchUsername, elasticsearchPassword)
 .build();
 return RestClients.create(clientConfiguration).rest();
 }
 private String[] StringHostParse(String hostAndPorts) {
 return hostAndPorts.split(",");
 }
 public static TrustManager[] trustAllCerts = new TrustManager[] {
 new X509TrustManager() {
 @Override
 public void checkClientTrusted(X509Certificate[] chain, String authType) throws CertificateException
{
 }
 @Override
 public void checkServerTrusted(X509Certificate[] chain, String authType) throws
CertificateException {
 }
 @Override
 public X509Certificate[] getAcceptedIssuers() {
 return null;
 }
 }
 };
 public static class NullHostNameVerifier implements HostnameVerifier {
 @Override
 public boolean verify(String arg0, SSLSession arg1) {
 return true;
 }
 }
}

Using Spring Boot to Access an HTTPS Cluster (Using a Security Certificate)
You can use a security certificate to connect to a cluster in security mode + HTTPS.

1. Obtain the security certificate CloudSearchService.cer.
a. Log in to the CSS management console.
b. In the navigation pane, choose Clusters. The cluster list is displayed.
c. Click the name of a cluster to go to the cluster details page.
d. On the Configuration page, click Download Certificate next to HTTPS

Access.

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 98

Figure 4-2 Downloading a certificate

2. Convert the security certificate CloudSearchService.cer. Upload the
downloaded security certificate to the client and use keytool to convert
the .cer certificate into a .jks certificate that can be read by Java.
– In Linux, run the following command to convert the certificate:

keytool -import -alias newname -keystore ./truststore.jks -file ./CloudSearchService.cer

– In Windows, run the following command to convert the certificate:
keytool -import -alias newname -keystore .\truststore.jks -file .\CloudSearchService.cer

In the preceding command, newname indicates the user-defined certificate
name.
After this command is executed, you will be prompted to set the certificate
password and confirm the password. Securely store the password. It will be
used for accessing the cluster.

3. application.properties configuration file:
elasticsearch.url=host1:9200,host2:9200
elasticsearch.username=username
elasticsearch.password=password

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 99

Table 4-9 Parameter description

Parameter Description

host IP address of the Elasticsearch
cluster node.

username Username for accessing the cluster.

password Password of the user.

4. Code:

NO TE

● com.xxx indicates the project directory, for example, com.company.project.

● com.xxx.repository is the repository directory, which is defined by extends
org.springframework.data.elasticsearch.repository.ElasticsearchRepository.

package com.xxx.configuration;
import org.elasticsearch.client.RestHighLevelClient;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.elasticsearch.client.ClientConfiguration;
import org.springframework.data.elasticsearch.client.RestClients;
import org.springframework.data.elasticsearch.config.AbstractElasticsearchConfiguration;
import org.springframework.data.elasticsearch.repository.config.EnableElasticsearchRepositories;
import java.io.File;
import java.io.FileInputStream;
import java.io.InputStream;
import java.security.KeyStore;
import java.security.SecureRandom;
import java.security.cert.CertificateException;
import java.security.cert.X509Certificate;
import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.SSLContext;
import javax.net.ssl.SSLSession;
import javax.net.ssl.TrustManager;
import javax.net.ssl.TrustManagerFactory;
import javax.net.ssl.X509TrustManager;
@Configuration
@EnableElasticsearchRepositories(basePackages = "com.xxx.repository")
@ComponentScan(basePackages = "com.xxx")
public class Config extends AbstractElasticsearchConfiguration {
 @Value("${elasticsearch.url}")
 public String elasticsearchUrl;
 @Value("${elasticsearch.username}")
 public String elasticsearchUsername;
 @Value("${elasticsearch.password}")
 public String elasticsearchPassword;
 @Override
 @Bean
 public RestHighLevelClient elasticsearchClient() {
 SSLContext sc = null;
 try {
 TrustManager[] tm = {new MyX509TrustManager(cerFilePath, cerPassword)};
 sc = SSLContext.getInstance("SSL", "SunJSSE");
 sc.init(null, tm, new SecureRandom());
 } catch (Exception e) {
 e.printStackTrace();
 }
 final ClientConfiguration clientConfiguration = ClientConfiguration.builder()
 .connectedTo(StringHostParse(elasticsearchUrl))
 .usingSsl(sc, new NullHostNameVerifier())

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 100

 .withBasicAuth(elasticsearchUsername, elasticsearchPassword)
 .build();
 return RestClients.create(clientConfiguration).rest();
 }

 private String[] StringHostParse(String hostAndPorts) {
 return hostAndPorts.split(",");
 }

 public static class MyX509TrustManager implements X509TrustManager {
 X509TrustManager sunJSSEX509TrustManager;
 MyX509TrustManager(String cerFilePath, String cerPassword) throws Exception {
 File file = new File(cerFilePath);
 if (!file.isFile()) {
 throw new Exception("Wrong Certification Path");
 }
 System.out.println("Loading KeyStore " + file + "...");
 InputStream in = new FileInputStream(file);
 KeyStore ks = KeyStore.getInstance("JKS");
 ks.load(in, cerPassword.toCharArray());
 TrustManagerFactory tmf = TrustManagerFactory.getInstance("SunX509", "SunJSSE");
 tmf.init(ks);
 TrustManager[] tms = tmf.getTrustManagers();
 for (TrustManager tm : tms) {
 if (tm instanceof X509TrustManager) {
 sunJSSEX509TrustManager = (X509TrustManager) tm;
 return;
 }
 }
 throw new Exception("Couldn't initialize");
 }
 @Override
 public void checkClientTrusted(X509Certificate[] chain, String authType) throws
CertificateException {
 }
 @Override
 public void checkServerTrusted(X509Certificate[] chain, String authType) throws
CertificateException {
 }
 @Override
 public X509Certificate[] getAcceptedIssuers() {
 return new X509Certificate[0];
 }
 }
 public static class NullHostNameVerifier implements HostnameVerifier {
 @Override
 public boolean verify(String arg0, SSLSession arg1) {
 return true;
 }
 }
}

In the preceding command, cerFilePath and cerPassword indicate the path
and password of the .jks certificate, respectively.

4.5 Accessing a Cluster Using Python
You can access a CSS cluster using Python.

Prerequisites
● The CSS cluster is available.
● Ensure that the server running Python can communicate with the CSS cluster.

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 101

Procedure
1. Install the Elasticsearch Python client. You are advised to use the client

version that matches the Elasticsearch version. For example, if the cluster
version is 7.6.2, install the Elasticsearch Python client 7.6.
pip install Elasticsearch==7.6

2. Create an Elasticsearch client and check whether the test index exists. The
examples for clusters in different security modes are as follows:
– Cluster in non-security mode

from elasticsearch import Elasticsearch

class ElasticFactory(object):

 def __init__(self, host: list, port: str, username: str, password: str):
 self.port = port
 self.host = host
 self.username = username
 self.password = password

 def create(self) -> Elasticsearch:
 addrs = []
 for host in self.host:
 addr = {'host': host, 'port': self.port}
 addrs.append(addr)

 if self.username and self.password:
 elasticsearch = Elasticsearch(addrs, http_auth=(self.username, self.password))
 else:
 elasticsearch = Elasticsearch(addrs)
 return elasticsearch

es = ElasticFactory(["xxx.xxx.xxx.xxx"], "9200", None, None).create()
print(es.indices.exists(index='test'))

– Cluster in security mode + HTTP
from elasticsearch import Elasticsearch

class ElasticFactory(object):

 def __init__(self, host: list, port: str, username: str, password: str):
 self.port = port
 self.host = host
 self.username = username
 self.password = password

 def create(self) -> Elasticsearch:
 addrs = []
 for host in self.host:
 addr = {'host': host, 'port': self.port}
 addrs.append(addr)

 if self.username and self.password:
 elasticsearch = Elasticsearch(addrs, http_auth=(self.username, self.password))
 else:
 elasticsearch = Elasticsearch(addrs)
 return elasticsearch

es = ElasticFactory(["xxx.xxx.xxx.xxx"], "9200", "username", "password").create()
print(es.indices.exists(index='test'))

– Cluster in security mode + HTTPS
from elasticsearch import Elasticsearch
import ssl

class ElasticFactory(object):

 def __init__(self, host: list, port: str, username: str, password: str):
 self.port = port

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 102

 self.host = host
 self.username = username
 self.password = password

 def create(self) -> Elasticsearch:
 context = ssl._create_unverified_context()

 addrs = []
 for host in self.host:
 addr = {'host': host, 'port': self.port}
 addrs.append(addr)

 if self.username and self.password:
 elasticsearch = Elasticsearch(addrs, http_auth=(self.username, self.password),
scheme="https", ssl_context=context)
 else:
 elasticsearch = Elasticsearch(addrs)
 return elasticsearch

es = ElasticFactory(["xxx.xxx.xxx.xxx"], "9200", "username", "password").create()
print(es.indices.exists(index='test'))

Table 4-10 Variables

Name Description

host List of the IP addresses of
Elasticsearch nodes (or independent
Client node). Multiple IP addresses
are separated using commas (,).

port Access port of the Elasticsearch
cluster. Enter 9200.

username Username for accessing the cluster.

password Password of the user.

3. Create a cluster index through the Elasticsearch client.

mappings = {
 "settings": {
 "index": {
 "number_of_shards": number_of_shards,
 "number_of_replicas": 1,
 },
 },
 "mappings": {
 properties
 }
}
result = es.indices.create(index=index, body=mappings)

4. Query the index created in the previous step through the Elasticsearch client.
body = {
 "query": {
 "match": {
 "Query field": "Query content"
 }
 }
}
result = es.search(index=index, body=body)

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 103

4.6 Using ES-Hadoop to Read and Write Data in
Elasticsearch Through Hive

The Elasticsearch-Hadoop (ES-Hadoop) connector combines the massive data
storage and in-depth processing capabilities of Hadoop with the real-time search
and analysis capabilities of Elasticsearch. It allows you to quickly get to know big
data and work better in the Hadoop ecosystem.

This section uses the ES-Hadoop of MRS as an example to describe how to
connect to a CSS cluster. You can configure any other applications that need to
use the Elasticsearch cluster. Ensure the network connection between the client
and the Elasticsearch cluster is normal.

Prerequisites
● The CSS cluster is available.
● The client can communicate with the CSS cluster.
● The CSS and MRS clusters are in the same region, AZ, VPC, and subnet.

Figure 4-3 CSS cluster information

Procedure
1. Obtain the private network address of the cluster. It is used to access the

cluster.

a. In the navigation pane on the left, choose Clusters.
b. In the cluster list, select a cluster, and obtain and record its Private

Network Address. Format: <host>:<port> or
<host>:<port>,<host>:<port>.
If the cluster has only one node, the IP address and port number of only
one node are displayed, for example, 10.62.179.32:9200. If the cluster
has multiple nodes, the IP addresses and port numbers of all nodes are
displayed, for example, 10.62.179.32:9200,10.62.179.33:9200.

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 104

2. Log in to an MRS cluster node. For details, see Logging In to an ECS.
3. Run the cURL command on an MRS cluster node to check the network

connectivity. Ensure every node in the MRS cluster can connect to the CSS
cluster.
– Cluster in non-security mode

curl -X GET http://<host>:<port>

– Cluster in security mode + HTTP
curl -X GET http://<host>:<port> -u <user>:<password>

– Cluster in security mode + HTTPS
curl -X GET https://<host>:<port> -u <user>:<password> -ik

Table 4-11 Variables

Variable Description

<host> IP address of each node in the cluster. If the cluster
contains multiple nodes, there will be multiple IP
addresses. You can use any of them.

<port> Port number for accessing a cluster node. Generally, the
port number is 9200.

<user> Username for accessing the cluster.

<password> Password of the user.
If the password contains special characters, enclose the
username and password in double quotation marks, for
example, curl -u "user:password!" "http://
<host>:<port>".

4. Download the ES-Hadoop lib package and decompress it to obtain the

elasticsearch-hadoop-x.x.x.jar file. The version must be the same as the CSS
cluster version. For example, if the CSS cluster version is 7.6.2, you are advised
to download elasticsearch-hadoop-7.6.2.zip.

5. Download the httpclient dependency package commons-
httpclient:commons-httpclient-3.1.jar. In the package name, 3.1 indicates
the version number. Select the package of the version you need.

6. Install the MRS client. If the MRS client has been installed, skip this step. For
details, see Installing a Client (MRS 3.x or Later).

7. Log in to the MRS client. Upload the JAR dependency packages of ES-Hadoop
and httpclient to the MRS client.

8. Create an HDFS directory on the MRS client. Upload the ES-Hadoop lib
package and the httpclient dependency package to the directory.
hadoop fs -mkdir /tmp/hadoop-es
hadoop fs -put elasticsearch-hadoop-x.x.x.jar /tmp/hadoop-es
hadoop fs -put commons-httpclient-3.1.jar /tmp/hadoop-es

9. Log in to the Hive client from the MRS client. For details, see Using a Hive
Client.

10. On the Hive client, add the ES-Hadoop lib package and the httpclient
dependency package. This command is valid only for the current session.
Enter beeline or hive to go to the execution page and run the following
commands:

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 105

https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0083.html
https://www.elastic.co/downloads/hadoop
https://mvnrepository.com/artifact/commons-httpclient/commons-httpclient/3.1
https://mvnrepository.com/artifact/commons-httpclient/commons-httpclient/3.1
https://support.huaweicloud.com/intl/en-us/usermanual-mrs/mrs_01_0089.html
https://support.huaweicloud.com/intl/en-us/cmpntguide-lts-mrs/mrs_01_0952.html
https://support.huaweicloud.com/intl/en-us/cmpntguide-lts-mrs/mrs_01_0952.html

add jar hdfs:///tmp/hadoop-es/commons-httpclient-3.1.jar;
add jar hdfs:///tmp/hadoop-es/elasticsearch-hadoop-x.x.x.jar;

11. On the Hive client, create a Hive foreign table.
– Cluster in non-security mode

CREATE EXTERNAL table IF NOT EXISTS student(
 id BIGINT,
 name STRING,
 addr STRING
)
STORED BY 'org.elasticsearch.hadoop.hive.EsStorageHandler'
TBLPROPERTIES(
 'es.nodes' = 'xxx.xxx.xxx.xxx:9200',
 'es.port' = '9200',
 'es.net.ssl' = 'false',
 'es.nodes.wan.only' = 'false',
 'es.nodes.discovery'='false',
 'es.input.use.sliced.partitions'='false',
 'es.resource' = 'student/_doc'
);

– Cluster in security mode + HTTP
CREATE EXTERNAL table IF NOT EXISTS student(
 id BIGINT,
 name STRING,
 addr STRING
)
STORED BY 'org.elasticsearch.hadoop.hive.EsStorageHandler'
TBLPROPERTIES(
 'es.nodes' = 'xxx.xxx.xxx.xxx:9200',
 'es.port' = '9200',
 'es.net.ssl' = 'false',
 'es.nodes.wan.only' = 'false',
 'es.nodes.discovery'='false',
 'es.input.use.sliced.partitions'='false',
 'es.nodes.client.only'='true',
 'es.resource' = 'student/_doc',
 'es.net.http.auth.user' = 'username',
 'es.net.http.auth.pass' = 'password'
);

– Cluster in security mode + HTTPS

i. Obtain the security certificate CloudSearchService.cer.

1) Log in to the CSS management console.
2) In the navigation pane, choose Clusters. The cluster list is

displayed.
3) Click the name of a cluster to go to the cluster details page.
4) On the Configuration page, click Download Certificate next to

HTTPS Access.

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 106

Figure 4-4 Downloading a certificate

ii. Convert the security certificate CloudSearchService.cer. Upload the
downloaded security certificate to the client and use keytool to
convert the .cer certificate into a .jks certificate that can be read by
Java.
○ In Linux, run the following command to convert the certificate:

keytool -import -alias newname -keystore ./truststore.jks -file ./
CloudSearchService.cer

○ In Windows, run the following command to convert the
certificate:
keytool -import -alias newname -keystore .\truststore.jks -
file .\CloudSearchService.cer

In the preceding command, newname indicates the user-defined
certificate name.
After this command is executed, you will be prompted to set the
certificate password and confirm the password. Securely store the
password. It will be used for accessing the cluster.

iii. Put the .jks file to the same path of each node in the MRS cluster, for
example, /tmp. You can run the scp command to transfer the file.
Ensure user omm has the permission to read the file. You can run
the following command to set the permission:
chown -R omm truststore.jks

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 107

iv. Create a Hive foreign table.
CREATE EXTERNAL table IF NOT EXISTS student(
 id BIGINT,
 name STRING,
 addr STRING
)
STORED BY 'org.elasticsearch.hadoop.hive.EsStorageHandler'
TBLPROPERTIES(
 'es.nodes' = 'https://xxx.xxx.xxx.xxx:9200',
 'es.port' = '9200',
 'es.net.ssl' = 'true',
 'es.net.ssl.truststore.location' = 'cerFilePath',
 'es.net.ssl.truststore.pass' = 'cerPassword',
 'es.nodes.wan.only' = 'false',
 'es.nodes.discovery'='false',
 'es.nodes.client.only'='true',
 'es.input.use.sliced.partitions'='false',
 'es.resource' = 'student/_doc',
 'es.net.http.auth.user' = 'username',
 'es.net.http.auth.pass' = 'password'
);

Table 4-12 ES-Hadoop parameters

Parameter Default Value Description

es.nodes localhost Address for accessing the CSS
cluster. You can view private
network address in the cluster
list.

es.port 9200 Port number for accessing a
cluster. Generally, the port
number is 9200.

es.nodes.wan.only false Whether to perform node
sniffing.

es.nodes.discovery true Whether to disable node
discovery.

es.input.use.sliced.partit
ions

true Whether to use slices. Its value
can be:
● true
● false
NOTE

If this parameter is set to true, the
index prefetch time may be
significantly prolonged, and may
even be much longer than the data
query time. You are advised to set
this parameter to false to improve
query efficiency.

es.resource NA Specifies the index and type to
be read and written.

es.net.http.auth.user NA Username for accessing the
cluster. Set this parameter only
if the security mode is enabled.

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 108

Parameter Default Value Description

es.net.http.auth.pass NA Password of the user. Set this
parameter only if the security
mode is enabled.

es.net.ssl false Whether to enable SSL. If SSL is
enabled, you need to configure
the security certificate
information.

es.net.ssl.truststore.loca
tion

NA Path of the .jks certificate file,
for example, file:///tmp/
truststore.jks.

es.nodes.client.only false Check whether the IP address of
an independent Client node is
configured for es.nodes (that is,
whether the Client node is
enabled during Elasticsearch
cluster creation). If yes, change
the value to true, or an error
will be reported, indicating that
the data node cannot be found.

es.net.ssl.truststore.pass NA Password of the .jks certificate
file.

For details about ES-Hadoop configuration items, see the official
configuration description.

12. On the Hive client, insert data.
INSERT INTO TABLE student VALUES (1, "Lucy", "address1"), (2, "Lily", "address2");

13. On the Hive client, run a query.
select * from student;

The query result is as follows:
+-------------+---------------+---------------+
| student.id | student.name | student.addr |
+-------------+---------------+---------------+
| 1 | Lucy | address1 |
| 2 | Lily | address2 |
+-------------+---------------+---------------+
2 rows selected (0.116 seconds)

14. Log in to the CSS console and choose Clusters. Locate the target cluster and
click Access Kibana in the Operation column.

15. On the Dev Tools page of Kibana, run a query and view the result.
GET /student/_search

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 109

https://www.elastic.co/guide/en/elasticsearch/hadoop/current/configuration.html
https://www.elastic.co/guide/en/elasticsearch/hadoop/current/configuration.html

Figure 4-5 Kibana query result

4.7 Accessing a Cluster Using Go
This section describes how to access a CSS cluster using Go.

Preparations
● The CSS cluster is available.
● Ensure that the server running Go can communicate with the CSS cluster.
● Ensure that Go has been installed on the server. You can download Go from

the official website: https://go.dev/dl/.

Connecting to a Non-Security Cluster
Connect to a non-security cluster. The sample code is as follows:

package main

import (
 "github.com/elastic/go-elasticsearch/v7"
 "log"
)

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 110

func main() {
 cfg := elasticsearch.Config{
 Addresses: []string{
 "http://HOST:9200/",
 },
 }

 es, _ := elasticsearch.NewClient(cfg)
 log.Println(es.Info())
}

Connecting to a Security Cluster
● Connect to a security cluster with HTTPS disabled. The sample code is as

follows:
package main

import (
 "github.com/elastic/go-elasticsearch/v7"
 "log"
)

func main() {
 cfg := elasticsearch.Config{
 Addresses: []string{
 "http://HOST:9200/",
 },
 Username: "USERNAME",
 Password: "PASSWORD",
 }

 es, _ := elasticsearch.NewClient(cfg)
 log.Println(es.Info())
}

● Connect to a security cluster that has enabled HTTPS and does not use
certificates. The sample code is as follows:
package main

import (
 "crypto/tls"
 "github.com/elastic/go-elasticsearch/v7"
 "log"
 "net/http"
)

func main() {
 cfg := elasticsearch.Config{
 Addresses: []string{
 "https://HOST:9200/",
 },
 Username: "USERNAME",
 Password: "PASSWORD",
 Transport: &http.Transport{
 TLSClientConfig: &tls.Config{
 InsecureSkipVerify: true,
 },
 },
 }

 es, _ := elasticsearch.NewClient(cfg)
 log.Println(es.Info())
}

● Connect to a security cluster that has enabled HTTPS and uses certificates.
The sample code is as follows:

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 111

package main

import (
 "crypto/tls"
 "crypto/x509"
 "flag"
 "github.com/elastic/go-elasticsearch/v7"
 "io/ioutil"
 "log"
 "net"
 "net/http"
 "time"
)

func main() {
 insecure := flag.Bool("insecure-ssl", false, "Accept/Ignore all server SSL certificates")
 flag.Parse()

 // Get the SystemCertPool, continue with an empty pool on error
 rootCAs, _ := x509.SystemCertPool()
 if rootCAs == nil {
 rootCAs = x509.NewCertPool()
 }

 // Read in the cert file
 certs, err := ioutil.ReadFile("/tmp/CloudSearchService.cer")
 if err != nil {
 log.Fatalf("Failed to append %q to RootCAs: %v", "xxx", err)
 }

 // Append our cert to the system pool
 if ok := rootCAs.AppendCertsFromPEM(certs); !ok {
 log.Println("No certs appended, using system certs only")
 }

 config := elasticsearch.Config{
 Addresses: []string{
 "https://HOST:9200/",
 },
 Username: "USERNAME",
 Password: "PASSWORD",
 Transport: &http.Transport{
 MaxIdleConnsPerHost: 10,
 ResponseHeaderTimeout: time.Second,
 DialContext: (&net.Dialer{
 Timeout: 30 * time.Second,
 KeepAlive: 30 * time.Second,
 }).DialContext,
 TLSClientConfig: &tls.Config{
 InsecureSkipVerify: *insecure,
 RootCAs: rootCAs,
 },
 },
 }
 es, _ := elasticsearch.NewClient(config)
 log.Println(elasticsearch.Version)
 log.Println(es.Info())
}

Running Code
Write the preceding code to the EsTest.gc file based on the cluster type and save
the file to an independent directory. Run the following command in the directory:
go env -w GO111MODULE=on
go env -w GOPROXY=https://repo.huaweicloud.com/repository/goproxy/
go env -w GONOSUMDB=*

go mod init test

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 112

go mod tidy
go run EsTest.go

Cloud Search Service
Best Practices 4 Cluster Access

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 113

5 Cluster Performance Tuning

5.1 Optimizing Write Performance
Before using a CSS cluster, you are advised to optimize the write performance of
the cluster to improve efficiency.

Data Write Process

Figure 5-1 Data write process

The process of writing data from a client to Elasticsearch is as follows:

1. The client sends a data write request to Node1. Here Node1 is the coordinator
node.

2. Node1 routes the data to shard 2 based on the _id of the data. In this case,
the request is forwarded to Node3 and the write operation is performed.

3. After data is written to the primary shard, the request is forwarded to the
replica shard of Node2. After the data is written to the replica, Node3 reports
the write success to the coordinator node, and the coordinator node reports it
to the client.

An index in Elasticsearch consists of one or more shards. Each shard contains
multiple segments, and each segment is an inverted index.

Cloud Search Service
Best Practices 5 Cluster Performance Tuning

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 114

Figure 5-2 Elasticsearch index composition

When a document is inserted into Elasticsearch, the document is first written to
the buffer and then periodically refreshed from the buffer to the segment. The
refresh frequency is specified by the refresh_interval parameter. By default, data
is refreshed every second.

Figure 5-3 Process of inserting a document into Elasticsearch

Improving Write Performance
In the Elasticsearch data write process, the following solutions can be used to
improve performance:

Table 5-1 Improving write performance

N
o.

Solution Description

1 Use SSDs or
improve
cluster
configuratio
ns.

Using SSDs can greatly speed up data write and merge
operations. For CSS, you are advised to select the ultra-high
I/O storage or ultra-high I/O servers.

2 Use Bulk
APIs.

The client writes data in batches. You are advised to write 1
MB to 10 MB data in each batch.

3 Randomly
generate _id.

If _id is specified, a query operation will be triggered before
data is written, affecting data write performance. In
scenarios where data does not need to be retrieved using
_id, you are advised to use a randomly generated _id.

4 Set a proper
number of
segments.

You are advised to set the number of shards to a multiple
of the number of cluster data nodes. Ensure each shard is
smaller than 50 GB.

Cloud Search Service
Best Practices 5 Cluster Performance Tuning

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 115

N
o.

Solution Description

5 Close
replicas.

Data write and query are performed in off-peak hours.
Close data copies during writing and open them afterwards.
The command for disabling replicas in Elasticsearch 7.x is as
follows:
PUT {index}/_settings
{
 "number_of_replicas": 0
}

6 Adjust the
index refresh
frequency.

During batch data writing, you can set refresh_interval to
a large value or -1 (indicating no refresh), improving the
write performance by reducing refresh.
In Elasticsearch 7.x, run the following command to set the
update time to 15s:
PUT {index}/_settings
{
 "refresh_interval": "15s"
}

7 Change the
number of
write
threads and
the size of
the write
queue.

You can increase the number of write threads and the size
of the write queue, or error code 429 may be returned for
unexpected traffic peaks.
In Elasticsearch 7.x, you can modify the following
parameters to optimize write performance:
thread_pool.write.size and thread_pool.write.queue_size

8 Set a proper
field type.

Specify the type of each field in the cluster, so that
Elasticsearch will not regard the fields as a combination of
keywords and texts, which unnecessarily increase data
volume. Keywords are used for keyword search, and texts
used for full-text search.
For the fields that do not require indexes, you are advised
to set index to false.
In Elasticsearch 7.x, run the following command to set
index to false for field1:
PUT {index}
{
 "mappings": {
 "properties": {
 "field1":{
 "type": "text",
 "index": false
 }
 }
 }
}

Cloud Search Service
Best Practices 5 Cluster Performance Tuning

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 116

N
o.

Solution Description

9 Optimize the
shard
balancing
policy.

By default, Elasticsearch uses the load balance policy based
on disk capacity. If there are multiple nodes, especially if
some of them are newly added, shards may be unevenly
allocated on the nodes. To avoid such problems, you can set
the index-level parameter
routing.allocation.total_shards_per_node to control the
distribution of index shards on each node. You can set this
parameter in the index template, or modify the setting of
an existing index to make the setting take effect.
Run the following command to modify the setting of an
existing index:
PUT {index}/_settings
{
 "index": {
 "routing.allocation.total_shards_per_node": 2
 }
}

5.2 Optimizing Query Performance
Before using a CSS cluster, you are advised to optimize the query performance of
the cluster to improve efficiency.

Data Query Process

Figure 5-4 Data query process

When a client sends a query request to Elasticsearch, the query process is as
follows:

1. The client sends a data query request to Node1. Here Node1 is the
coordinator node.

2. Node1 selects a shard based on the shard distribution and the index specified
in the query, and then forwards the request to Node1, Node2, and Node3.

Cloud Search Service
Best Practices 5 Cluster Performance Tuning

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 117

3. Each shard executes the query task. After the query succeeds on the shards,
the query results are aggregated to Node1, which returns the results to the
client.

For a query request, five shards can be queried concurrently on a node by default.
If there are more than five shards, the query will be performed in batches. In a
single shard, the query is performed by traversing each segment one by one.

Figure 5-5 Elasticsearch index composition

Improving Query Performance
In the Elasticsearch data query process, the following solutions can be used to
improve performance:

Table 5-2 Improving query performance

N
o.

Solution Description

1 Use
_routing to
reduce the
number of
shards
scanned
during
retrieval.

During data import, configure routing to route data to a
specific shard instead of all the shards of the related index,
improving the overall throughput of the cluster.
In Elasticsearch 7.x, run the following commands:
● Insert data based on a specified routing.

PUT /{index}/_doc/1?routing=user1
{
 "title": "This is a document"
}

● Query data based on a specified routing.
GET /{index}/_doc/1?routing=user1

Cloud Search Service
Best Practices 5 Cluster Performance Tuning

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 118

N
o.

Solution Description

2 Use index
sorting to
reduce the
number of
segments to
be scanned.

When a request is processed on a shard, the segments of
the shard are traversed one by one. By using index sorting,
the range query or sorting query can be terminated in
advance (early-terminate).
For example, in Elasticsearch 7.x, run the following
commands:
// Assume the date field needs to be frequently used for range query.
PUT {index}
{
 "settings": {
 "index": {
 "sort.field": "date",
 "sort.order": "desc"
 }
 },
 "mappings": {
 "properties": {
 "date": {
 "type": "date"
 }
 }
 }
}

3 Add query
cache to
improve
cache hit.

When a filter request is executed in a segment, the bitset is
used to retain the result, which can be reused for later
similar queries, thus reducing the overall query workloads.
You can add query cache by increasing the value of
indices.queries.cache.size. For details, see Configuring
Parameters. Restart the cluster for the modification to take
effect.

4 Perform
forcemerge
in advance
to reduce
the number
of segments
to be
scanned.

For read-only indexes that are periodically rolled, you can
periodically execute forcemerge to combine small segments
into large segments and permanently delete indexes
marked as deleted.
In Elasticsearch 7.x, a configuration example is as follows:
// Assume the number of segments after index forcemerge is set to 10.
POST /{index}/_forcemerge?max_num_segments=10

Cloud Search Service
Best Practices 5 Cluster Performance Tuning

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 119

https://support.huaweicloud.com/intl/en-us/usermanual-css/css_01_0080.html
https://support.huaweicloud.com/intl/en-us/usermanual-css/css_01_0080.html

6 Managing the Index Lifecycle

6.1 Configuring the Lifecycle to Automate Index
Rollover

Overview

Time series data is continuously written and increases index size. You can
configure the lifecycle to periodically roll over to new indexes and delete old
indexes.

In this section, a lifecycle policy is configured. If the size of an index reaches 1 TB
or the index has been created for more than one day, a new index will be
automatically generated. Seven days after the index is created, the data copy will
be disabled. Thirty days after the index is created, the index will be deleted.

Assume that an index generates about 2.4 TB data every day. The index alias is
log-alias. The following figure shows the data format in Elasticsearch. During
read, it points to all indexes starting with test. During write, it points to the latest
index.

Figure 6-1 log-alias format

NO TE

The one day in the rollover time refers to 24 hours after the index creation time, not a
calendar day.

Cloud Search Service
Best Practices 6 Managing the Index Lifecycle

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 120

Prerequisites
● The CSS cluster is available.
● The cluster version is Elasticsearch 7.6.2 or later.

Procedure
1. Log in to the CSS management console.
2. In the navigation pane on the left, choose Clusters to go to the Elasticsearch

cluster list.
3. Click Access Kibana in the Operation column of a cluster.
4. In the navigation tree on the left of Kibana, choose Dev Tools. The command

execution page is displayed.
5. Create a rollover lifecycle policy named rollover_workflow.

Policy description: When the size of an index reaches 1 TB or the index has
been created for more than one day, the index rollover is performed. When
the index has been created for seven days, the data copy is disabled. When
the index has been created for 30 days, the index is deleted.
PUT _opendistro/_ism/policies/rollover_workflow
{
 "policy": {
 "description": "rollover test",
 "default_state": "hot",
 "states": [
 {
 "name": "hot",
 "actions": [
 {
 "rollover": {
 "min_size": "1tb",
 "min_index_age": "1d"
 }
 }
],
 "transitions": [
 {
 "state_name": "warm",
 "conditions": {
 "min_index_age": "7d"
 }
 }
]
 },
 {
 "name": "warm",
 "actions": [
 {
 "replica_count": {
 "number_of_replicas": 0
 }
 }
],
 "transitions": [
 {
 "state_name": "delete",
 "conditions": {
 "min_index_age": "30d"
 }
 }
]
 },
 {

Cloud Search Service
Best Practices 6 Managing the Index Lifecycle

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 121

 "name": "delete",
 "actions": [
 {
 "delete": {}
 }
]
 }
]
 }
}

After a lifecycle policy is created, run the following command to query the
policy details:
GET _opendistro/_ism/policies/rollover_workflow

6. Create the index template template_test.
Template description: All the new indexes starting with test are automatically
associated with the rollover lifecycle policy rollover_workflow. The alias
log_alias is used during rollover.
PUT _template/template_test
{
 "index_patterns": "test*",
 "settings": {
 "number_of_replicas": 1,
 "number_of_shards": 1,
 "opendistro.index_state_management.policy_id": "rollover_workflow",
 "index.opendistro.index_state_management.rollover_alias": "log_alias"
 },
 "mappings": {
 "properties": {
 "name": {
 "type": "text"
 }
 }
 }
}

Table 6-1 Parameter description

Parameter Description

number_of_shards Number of index shards

number_of_replicas Number of index shard
replicas

opendistro.index_state_management.policy_i
d

Lifecycle policy name

index.opendistro.index_state_management.r
ollover_alias

Index alias for rollover

After an index template is created, you can run the following command to
query the template details:
GET _template/template_test

7. Create an index, specify aliases, and set is_write_index to true. The index
template template_test is automatically used for the index and is associated
with the lifecycle policy rollover_workflow based on the index template
configuration. In this way, when the index size reaches 1 TB or the index is

Cloud Search Service
Best Practices 6 Managing the Index Lifecycle

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 122

created for more than one day, the rollover automatically starts. After an
index is created for seven days, the data copy is disabled. After an index is
created for 30 days, the index is deleted.
The following index is the URL code of <test-{now/d}-000001>. By default,
an index name contains the creation date. For example, if an index is created
on 2022-06-02, the index name is test-2022.06.02-000001.
PUT %3Ctest-%7Bnow%2Fd%7D-000001%3E
{
 "aliases": {
 "log_alias": {
 "is_write_index": true
 }
 }
}

8. The alias log_alias is used to during data write, and log_alias always points
to the last index.
POST log_alias/_bulk
{"index":{}}
{"name":"name1"}
{"index":{}}
{"name":"name2"}
{"index":{}}
{"name":"name3"}
{"index":{}}
{"name":"name4"}
{"index":{}}
{"name":"name5"}
{"index":{}}
{"name":"name6"}

9. Query data and check whether the rollover takes effect.
– One day after the indexes are created, check the indexes starting with

test.
GET _cat/indices/test*?s=i

There are supposed to be at least two indexes, for example:
green open test-<Date>-000001 r8ab5NX6T3Ox_hoGUanogQ 1 1 6 0 416b 208b
green open test-<Date>-000002 sfwkVgy8RSSEw7W-xYjM2Q 1 1 0 0 209b 209b

In the preceding information, test-<Date>-000001 is the index created in
7, and test-<Date>-000002 is the index generated in rollover.

– To query the index associated with the alias log_alias, run the following
command:
GET _cat/aliases/log_alias?v

The alias is supposed to point to multiple indexes, for example:
alias index filter routing.index routing.search is_write_index
log_alias test-<Date>-000001 - - - false
log_alias test-<Date>-000002 - - - true

6.2 Configuring the Lifecycle to Decouple Storage and
Compute

Overview
CSS supports decoupled storage and compute. That is, indexes can be frozen in
OBS to reduce the storage cost of cold data. This document describes how to use
index lifecycle management to automatically freeze indexes at a specific time to
decouple storage and compute.

Cloud Search Service
Best Practices 6 Managing the Index Lifecycle

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 123

In this section, a lifecycle policy is configured to automatically freeze an index
three days after it is created and dump data to OBS. The index will be deleted
seven days after it is created.

Prerequisites
● The CSS cluster is available.
● The cluster version is Elasticsearch 7.6.2 or later.

Procedure
1. Log in to the CSS management console.
2. In the navigation pane on the left, choose Clusters to go to the Elasticsearch

cluster list.
3. Click Access Kibana in the Operation column of a cluster.
4. In the navigation tree on the left of Kibana, choose Dev Tools. The command

execution page is displayed.
5. Create a lifecycle policy named hot_warm_policy.

Policy description: Three days after an index is created, the API for freezing
the index is automatically called to dump data to OBS. Seven days after an
index is created, the index is deleted.
PUT _opendistro/_ism/policies/hot_warm_policy
{
 "policy": {
 "description": "hot warm delete workflow",
 "error_notification": null,
 "default_state": "hot",
 "states": [
 {
 "name": "hot",
 "actions": [],
 "transitions": [
 {
 "state_name": "warm",
 "conditions": {
 "min_index_age": "3d"
 }
 }
]
 },
 {
 "name": "warm",
 "actions": [
 {
 "freeze_low_cost": {}
 }
],
 "transitions": [
 {
 "state_name": "delete",
 "conditions": {
 "min_index_age": "7d"
 }
 }
]
 },
 {
 "name": "delete",
 "actions": [
 {
 "delete": {}

Cloud Search Service
Best Practices 6 Managing the Index Lifecycle

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 124

 }
],
 "transitions": []
 }
]
 }
}

6. Create the index template template_hot_warm.
Template description: All the new indexes starting with data are
automatically associated with the lifecycle policy hot_warm_policy.
PUT _template/template_hot_warm
{
 "index_patterns": "data*",
 "settings": {
 "number_of_replicas": 5,
 "number_of_shards": 1,
 "opendistro.index_state_management.policy_id": "hot_warm_policy"
 },
 "mappings": {
 "properties": {
 "name": {
 "type": "text"
 }
 }
 }
}

Table 6-2 Parameter description

Parameter Description

number_of_shards Number of index shards

number_of_replicas Number of index shard
replicas

opendistro.index_state_management.policy_i
d

Lifecycle policy name

7. Create the data-2022-06-06 index. The index automatically uses the

template_hot_warm template and associates the index template with the
lifecycle policy hot_warm_policy. In this way, the index is frozen three days
after creation and is deleted seven days after creation.
POST data-2022-06-06/_bulk
{"index":{}}
{"name":"name1"}
{"index":{}}
{"name":"name2"}
{"index":{}}
{"name":"name3"}
{"index":{}}
{"name":"name4"}
{"index":{}}
{"name":"name5"}
{"index":{}}
{"name":"name6"}

8. Query data and check whether storage and compute is automatically
decoupled.
– Three days after the index is created, check the frozen index.

GET _cat/freeze_indices?s=i&v

Cloud Search Service
Best Practices 6 Managing the Index Lifecycle

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 125

The index generated three days ago is expected to be frozen.
health status index uuid pri rep docs.count docs.deleted store.size
pri.store.size
green open data-2022-06-06 x8ab5NX6T3Ox_xoGUanogQ 1 1 6 0
7.6kb 3.8kb

– Seven days after the index is created, check the frozen index. The index is
expected to be deleted.

Cloud Search Service
Best Practices 6 Managing the Index Lifecycle

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 126

7 Practices

7.1 Using CSS to Accelerate Database Query and
Analysis

Overview
Elasticsearch is used as a supplement to relational databases, such as MySQL and
GaussDB(for MySQL), to improve the full-text search and high-concurrency ad hoc
query capabilities of the databases.

This chapter describes how to synchronize data from a MySQL database to CSS to
accelerate full-text search and ad hoc query and analysis. The following figure
shows the solution process.

Figure 7-1 Using CSS to accelerate database query and analysis

1. Service data is stored in the MySQL database.
2. DRS synchronizes data from MySQL to CSS in real time.
3. CSS is used for full-text search and data query and analysis.

Prerequisites
● A CSS cluster and a MySQL database in security mode have been created, and

they are in the same VPC and security group.
● Data to be synchronized exists in the MySQL database. This section uses the

following table structure and initial data as an example.

a. Create a student information table in MySQL.
CREATE TABLE `student` (
 `dsc` varchar(100) COLLATE utf8mb4_general_ci DEFAULT NULL,
 `age` smallint unsigned DEFAULT NULL,
 `name` varchar(32) COLLATE utf8mb4_general_ci NOT NULL,
 `id` int unsigned NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci;

Cloud Search Service
Best Practices 7 Practices

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 127

b. Insert the initial data of three students into the MySQL database.
INSERT INTO student (id,name,age,dsc)
VALUES
('1','Jack Ma Yun','50','Jack Ma Yun is a Chinese business magnate, investor and philanthropist.'),
('2','will smith','22','also known by his stage name the Fresh Prince, is an American actor, rapper,
and producer.'),
('3','James Francis Cameron','68','the director of avatar');

● Indexes have been created in the CSS cluster and match the table indexes in
the MySQL database.

The following is an example of the indexes in the cluster in this chapter:
PUT student
{
 "settings": {
 "number_of_replicas": 0,
 "number_of_shards": 3
 },
 "mappings": {
 "properties": {
 "id": {
 "type": "keyword"
 },
 "name": {
 "type": "short"
 },
 "age": {
 "type": "short"
 },
 "desc": {
 "type": "text"
 }
 }
 }
}

Configure number_of_shards and number_of_replicas as needed.

Procedure

Step 1 Use DRS to synchronize MySQL data to CSS in real time. For details, see From
MySQL to CSS/ES.

In this example, configure the parameters by following the suggestions in Table
7-1.

Table 7-1 Synchronization parameters

Module Parameter Suggestion

Create
Synchronization
Instance >
Synchronize
Instance Details

Network Type Select VPC.

Source DB
Instance

Select the RDS for MySQL instance to
be synchronized, that is, the MySQL
database that stores service data.

Synchronization
Instance Subnet

Select the subnet where the
synchronization instance is located.
You are advised to select the subnet
where the database instance and the
CSS cluster are located.

Cloud Search Service
Best Practices 7 Practices

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 128

https://support.huaweicloud.com/intl/en-us/realtimesyn-drs/drs_04_0460.html
https://support.huaweicloud.com/intl/en-us/realtimesyn-drs/drs_04_0460.html

Module Parameter Suggestion

Configure Source
and Destination
Databases >
Destination
Database

VPC and Subnet Select the VPC and subnet of the CSS
cluster.

IP Address or
Domain Name

Enter the IP address of the CSS cluster.
For details, see Obtaining the IP
address of a CSS cluster.

Database
Username and
Database
Password

Enter the administrator username
(admin) and password of the CSS
cluster.

Encryption
Certificate

Select the security certificate of the
CSS cluster. If SSL Connection is not
enabled, you do not need to select any
certificate. For details, see Obtaining
the security certificate of a CSS
cluster.

Set
Synchronization
Task

Flow Control Select No.

Synchronization
Object Type

Deselect Table structure, because the
indexes matching MySQL tables have
been created in the CSS cluster.

Synchronization
Object

Select Tables. Select the database and
table name corresponding to CSS.
NOTE

Ensure the type name in the configuration
item is the same as the index name, that
is, _doc.

Process Data - Click Next.

After the synchronization task is started, wait until the Status of the task changes
from Full synchronization to Incremental, indicating real-time synchronization
has started.

Step 2 Check the synchronization status of the database.

1. Verify full data synchronization.

Run the following command in Kibana of CSS to check whether full data has
been synchronized to CSS:
GET student/_search

2. Insert new data in the source cluster and check whether the data is
synchronized to CSS.

For example, insert a record whose id is 4 in the source cluster.
INSERT INTO student (id,name,age,dsc)
VALUES
('4','Bill Gates','50','Gates III is an American business magnate, software developer, investor, author,
and philanthropist.')

Cloud Search Service
Best Practices 7 Practices

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 129

Run the following command in Kibana of CSS to check whether new data is
synchronized to CSS:
GET student/_search

3. Update data in the source cluster and check whether the data is synchronized
to CSS.
For example, in the record whose id is 4, change the value of age from 50 to
55.
UPDATE student set age='55' WHERE id=4;

Run the following command in Kibana of CSS to check whether the data is
updated in CSS:
GET student/_search

4. Delete data from the source cluster and check whether the data is deleted
synchronously from CSS.
For example, delete the record whose id is 4.
DELETE FROM student WHERE id=4;

Run the following command in Kibana of CSS to check whether the data is
deleted synchronously from CSS:
GET student/_search

Step 3 Verify the full-text search capability of the database.

For example, run the following command to query the data that contains avatar
in dsc in CSS:

GET student/_search
{
 "query": {
 "match": {
 "dsc": "avatar"
 }
 }
}

Step 4 Verify the ad hoc query capability of the database.

For example, query philanthropist whose age is greater than 40 in CSS.

GET student/_search
{
 "query": {
 "bool": {
 "must": [
 {
 "match": {
 "dsc": "philanthropist"
 }
 },
 {
 "range": {
 "age": {
 "gte": 40
 }
 }
 }
]
 }
 }
}

Step 5 Verify the statistical analysis capability of the database.

For example, use CSS to collect statistics on the age distributions of all users.

Cloud Search Service
Best Practices 7 Practices

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 130

GET student/_search
{
 "size": 0,
 "query": {
 "match_all": {}
 },
 "aggs": {
 "age_count": {
 "terms": {
 "field": "age",
 "size": 10
 }
 }
 }
}

----End

Other Operations
● Obtaining the IP address of a CSS cluster

a. In the navigation pane on the left, choose Clusters.
b. In the cluster list, locate a cluster, and obtain the IP address of the CSS

cluster from the Private Network Address column. Generally, the IP
address format is <host>:<port> or <host>:<port>,<host>:<port>.
If the cluster has only one node, the IP address and port number of only
one node are displayed, for example, 10.62.179.32:9200. If the cluster
has multiple nodes, the IP addresses and port numbers of all nodes are
displayed, for example, 10.62.179.32:9200,10.62.179.33:9200.

● Obtaining the security certificate of a CSS cluster

a. Log in to the CSS management console.
b. In the navigation pane, choose Clusters. The cluster list is displayed.
c. Click the name of a cluster to go to the cluster details page.
d. On the Configuration page, click Download Certificate next to HTTPS

Access.

Cloud Search Service
Best Practices 7 Practices

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 131

Figure 7-2 Downloading a certificate

7.2 Using CSS to Build a Unified Log Management
Platform

A unified log management platform built using CSS can manage logs in real time
in a unified and convenient manner, enabling log-driven O&M and improving
service management efficiency.

Overview

Elasticsearch, Logstash, Kibana, and Beats (ELKB) provides a complete set of log
solutions and is a mainstream log system. The following figure shows its
framework.

Figure 7-3 Unified log management platform framework

Cloud Search Service
Best Practices 7 Practices

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 132

● Beats is a lightweight log collector, comprising Filebeat and Metricbeat.
● Logstash collects and preprocesses logs. It supports multiple data sources and

ETL processing modes.
● Elasticsearch is an open-source distributed search engine that collects,

analyzes, and stores data. CSS allows you to create Elasticsearch clusters.
● Kibana is a visualization tool used to perform web-based visualized query and

make BI reports.

This section describes how to use CSS, Filebeat, Logstash, and Kibana to build a
unified log management platform. Filebeat collects ECS logs and sends the logs to
Logstash for data processing. The processing results are stored in CSS, and can be
queried, analyzed, and visualized using Kibana.

For details about the version compatibility of ELKB components, see https://
www.elastic.co/support/matrix#matrix_compatibility.

Prerequisites
● A CSS cluster in non-security mode has been created.
● You have applied for an ECS and installed the Java environment on it.

Procedure

Step 1 Deploy and configure Filebeat.

1. Download Filebeat. The recommended version is 7.6.2. Download it at
https://www.elastic.co/downloads/past-releases#filebeat-oss.

2. Configure the Filebeat configuration file filebeat.yml.
For example, to collect all the files whose names end with log in the /root/
directory, configure the filebeat.yml file is as follows:
filebeat.inputs:
- type: log
 enabled: true
 # Path of the collected log file
 paths:
 - /root/*.log

filebeat.config.modules:
 path: ${path.config}/modules.d/*.yml
 reload.enabled: false
Logstash hosts information
output.logstash:
 hosts: ["192.168.0.126:5044"]

processors:

Step 2 Deploy and configure Logstash.

NO TE

To achieve better performance, you are advised to set the JVM parameter in Logstash to
half of the ECS or docker memory.

1. Download Logstash. The recommended version is 7.6.2. Download it at
https://www.elastic.co/downloads/past-releases#logstash-oss.

2. Ensure that Logstash can communicate with the CSS cluster.
3. Configure the Logstash configuration file logstash-sample.conf.

Cloud Search Service
Best Practices 7 Practices

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 133

https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/downloads/past-releases#filebeat-oss
https://www.elastic.co/downloads/past-releases#logstash-oss

The content of the logstash-sample.conf file is as follows:
input {
 beats {
 port => 5044
 }
}
Split data.
filter {
 grok {
 match => {
 "message" => '\[%{GREEDYDATA:timemaybe}\] \[%{WORD:level}\] %{GREEDYDATA:content}'
 }
 }
 mutate {
 remove_field => ["@version","tags","source","input","prospector","beat"]
 }
}
CSS cluster information
output {
 elasticsearch {
 hosts => ["http://192.168.0.4:9200"]
 index => "%{[@metadata][beat]}-%{+YYYY.MM.dd}"
 #user => "xxx"
 #password => "xxx"
 }
}

NO TE

You can use Grok Debugger (https://grokdebugger.com/) to configure the filter
mode of Logstash.

Step 3 Configure the index template of the CSS cluster on Kibana or via API.

For example, create an index template. Let the index use three shards and no
replicas. Fields such as @timestamp, content, host.name, level, log.file.path,
message and timemaybe are defined in the index.

PUT _template/filebeat
{
 "index_patterns": ["filebeat*"],
 "settings": {
 # Define the number of shards.
 "number_of_shards": 3,
 # Define the number of copies.
 "number_of_replicas": 0,
 "refresh_interval": "5s"
 },
 # Define a field.
 "mappings": {
 "properties": {
 "@timestamp": {
 "type": "date"
 },
 "content": {
 "type": "text"
 },
 "host": {
 "properties": {
 "name": {
 "type": "text"
 }
 }
 },
 "level": {
 "type": "keyword"
 },
 "log": {

Cloud Search Service
Best Practices 7 Practices

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 134

https://grokdebugger.com/

 "properties": {
 "file": {
 "properties": {
 "path": {
 "type": "text"
 }
 }
 }
 }
 },
 "message": {
 "type": "text"
 },
 "timemaybe": {
 "type": "date",
 "format": "yyyy-MM-dd HH:mm:ss||epoch_millis||EEE MMM dd HH:mm:ss zzz yyyy"
 }
 }
 }
}

Step 4 Prepare test data on ECS.

Run the following command to generate test data and write the data to /root/
tmp.log:

bash -c 'while true; do echo [$(date)] [info] this is the test message; sleep 1; done;' >> /root/tmp.log &

The following is an example of the generated test data:

[Thu Feb 13 14:01:16 CST 2020] [info] this is the test message

Step 5 Run the following command to start Logstash:
nohup ./bin/logstash -f /opt/pht/logstash-6.8.6/logstash-sample.conf &

Step 6 Run the following command to start Filebeat:
./filebeat

Step 7 Use Kibana to query data and create reports.

1. Go to the Kibana page of the CSS cluster.

2. Click Discover and perform query and analysis, as shown in the following
figure.

Figure 7-4 Discover page

----End

Cloud Search Service
Best Practices 7 Practices

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 135

7.3 Configuring Query Scoring in an Elasticsearch
Cluster

You can score matched documents in an Elasticsearch cluster. This section
describes how to configure query scoring.

Overview
You can score a query in either of the following ways:

● Calculate the final scores (new_score) of query results based on vote and
sort the results in descending order.
new_score = query_score x (vote x factor)
– query_score: calculated based on the total number of search keywords

found in a record. A record earns 1 point for each keyword it contains.
– vote: vote of a record.
– factor: user-defined weight of vote.

● Calculate the final scores (new_score) of query results based on inline and
sort the results in descending order.
new_score = query_score x inline
– query_score: calculated based on the total number of search keywords

found in a record. A record earns 1 point for each keyword it contains.
– vote: vote of a record.
– inline: Configure two value options for this parameter and a threshold for

vote. One option is used if vote exceeds the threshold, and the other is
used if vote is smaller than or equal to the threshold. In this way, the
query accuracy will not be affected by abnormal vote values.

Prerequisites
An Elasticsearch cluster has been created on the CSS management console and is
available.

Procedure
NO TE

The code examples in this section can only be used for clusters Elasticsearch 7.x or later.

1. Log in to the CSS management console.
2. In the navigation pane on the left, click Clusters to go to the Elasticsearch

cluster list.
3. Click Access Kibana in the Operation column of a cluster.
4. In the navigation tree on the left of Kibana, choose Dev Tools. The command

execution page is displayed.
5. Create an index and specify a custom mapping to define the data type.

For example, the content of the tv.json file is as follows:

Cloud Search Service
Best Practices 7 Practices

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 136

{
"tv":[
{ "name": "tv1", "description": "USB, DisplayPort", "vote": 0.98 }
{ "name": "tv2", "description": "USB, HDMI", "vote": 0.99 }
{ "name": "tv3", "description": "USB", "vote": 0.5 }
{ "name": "tv4", "description": "USB, HDMI, DisplayPort", "vote": 0.7 }
]
}

Run the following command to create the mall index and specify the user-
defined mapping to define the data type:
PUT /mall?pretty
{
 "mappings": {
 "properties": {
 "name": {
 "type": "text",
 "fields": {
 "keyword": {
 "type": "keyword"
 }
 }
 },
 "description": {
 "type": "text",
 "fields": {
 "keyword": {
 "type": "keyword"
 }
 }
 },
 "vote": {
 "type": "float"
 }
 }
 }
}

6. Import data.
Run the following command to import data in the tv.json file to the mall
index:
POST /mall/_bulk?pretty
{ "index": {"_id": "1"}}
{ "name": "tv1", "description": "USB, DisplayPort", "vote": 0.98 }
{ "index": {"_id": "2"}}
{ "name": "tv2", "description": "USB, HDMI", "vote": 0.99 }
{ "index": {"_id": "3"}}
{ "name": "tv3", "description": "USB", "vote": 0.5 }
{ "index": {"_id": "4"}}
{ "name": "tv4", "description": "USB, HDMI, DisplayPort", "vote": 0.7 }

7. Query data by using custom scoring. The query results can be scored based on
vote or inline.
Assume a user wants to query TVs with USB, HDMI, and/or DisplayPort ports.
The final query score can be calculated in the following ways and used for
sorting:
– Scoring based on vote

The score is calculated using the formula new_score = query_score x
(vote x factor). Run the following command:
GET /mall/_doc/_search?pretty
{
 "query":{
 "function_score":{
 "query":{
 "bool":{

Cloud Search Service
Best Practices 7 Practices

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 137

 "should":[
 {"match": {"description": "USB"}},
 {"match": {"description": "HDMI"}},
 {"match": {"description": "DisplayPort"}}
]
 }
 },
 "field_value_factor":{
 "field":"vote",
 "factor":1
 },
 "boost_mode":"multiply",
 "max_boost":10
 }
 }
}

The query results are displayed in descending order of the score. The
command output is as follows:
{
 "took" : 4,
 "timed_out" : false,
 "_shards" : {
 "total" : 1,
 "successful" : 1,
 "skipped" : 0,
 "failed" : 0
 },
 "hits" : {
 "total" : {
 "value" : 4,
 "relation" : "eq"
 },
 "max_score" : 0.8388366,
 "hits" : [
 {
 "_index" : "mall",
 "_type" : "_doc",
 "_id" : "4",
 "_score" : 0.8388366,
 "_source" : {
 "name" : "tv4",
 "description" : "USB, HDMI, DisplayPort",
 "vote" : 0.7
 }
 },
 {
 "_index" : "mall",
 "_type" : "_doc",
 "_id" : "2",
 "_score" : 0.7428025,
 "_source" : {
 "name" : "tv2",
 "description" : "USB, HDMI",
 "vote" : 0.99
 }
 },
 {
 "_index" : "mall",
 "_type" : "_doc",
 "_id" : "1",
 "_score" : 0.7352994,
 "_source" : {
 "name" : "tv1",
 "description" : "USB, DisplayPort",
 "vote" : 0.98
 }
 },
 {
 "_index" : "mall",

Cloud Search Service
Best Practices 7 Practices

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 138

 "_type" : "_doc",
 "_id" : "3",
 "_score" : 0.03592815,
 "_source" : {
 "name" : "tv3",
 "description" : "USB",
 "vote" : 0.5
 }
 }
]
 }
}

– Scoring based on inline
The score is calculated using the formula new_score = query_score x
inline. In this example, if vote > 0.8, the value of inline is 1. If vote ≤ 0.8,
the value of inline is 0.5. Run the following command:
GET /mall/_doc/_search?pretty
{
 "query":{
 "function_score":{
 "query":{
 "bool":{
 "should":[
 {"match":{"description":"USB"}},
 {"match":{"description":"HDMI"}},
 {"match":{"description":"DisplayPort"}}
]
 }
 },
 "script_score": {
 "script": {
 "params": {
 "threshold": 0.8
 },
 "inline": "if (doc[\"vote\"].value > params.threshold) {return 1;} return 0.5;"
 }
 },
 "boost_mode":"multiply",
 "max_boost":10
 }
 }
}

The query results are displayed in descending order of the score. The
command output is as follows:
{
 "took" : 4,
 "timed_out" : false,
 "_shards" : {
 "total" : 1,
 "successful" : 1,
 "skipped" : 0,
 "failed" : 0
 },
 "hits" : {
 "total" : {
 "value" : 4,
 "relation" : "eq"
 },
 "max_score" : 0.75030553,
 "hits" : [
 {
 "_index" : "mall",
 "_type" : "_doc",
 "_id" : "1",
 "_score" : 0.75030553,
 "_source" : {

Cloud Search Service
Best Practices 7 Practices

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 139

 "name" : "tv1",
 "description" : "USB, DisplayPort",
 "vote" : 0.98
 }
 },
 {
 "_index" : "mall",
 "_type" : "_doc",
 "_id" : "2",
 "_score" : 0.75030553,
 "_source" : {
 "name" : "tv2",
 "description" : "USB, HDMI",
 "vote" : 0.99
 }
 },
 {
 "_index" : "mall",
 "_type" : "_doc",
 "_id" : "4",
 "_score" : 0.599169,
 "_source" : {
 "name" : "tv4",
 "description" : "USB, HDMI, DisplayPort",
 "vote" : 0.7
 }
 },
 {
 "_index" : "mall",
 "_type" : "_doc",
 "_id" : "3",
 "_score" : 0.03592815,
 "_source" : {
 "name" : "tv3",
 "description" : "USB",
 "vote" : 0.5
 }
 }
]
 }
}

Cloud Search Service
Best Practices 7 Practices

Issue 01 (2024-07-01) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 140

	Contents
	1 Cluster and Index Planning
	2 Permission Configuration
	2.1 Granting IAM Users the Permission to Create CSS Clusters
	2.2 Creating an Elasticsearch User and Configuring Index Permissions

	3 Cluster Migration
	3.1 Migration Solution Overview
	3.2 Migration from Elasticsearch
	3.2.1 Using Logstash to Perform Full Data Migration
	3.2.2 Using Logstash to Perform Incremental Data Migration
	3.2.3 Migrating Data Through Backup and Restoration (from CSS Elasticsearch)
	3.2.4 Migrating Data Through Backup and Restoration (from Third-Party Elasticsearch)

	3.3 Migration from Kafka/MQ
	3.4 Migration from a Database

	4 Cluster Access
	4.1 Overview
	4.2 Accessing an Elasticsearch Cluster
	4.3 Accessing a Cluster Using cURL Commands
	4.4 Accessing a Cluster Using Java
	4.4.1 Accessing a Cluster Through the Rest High Level Client
	4.4.2 Accessing a Cluster Through the Rest Low Level Client
	4.4.3 Accessing the Cluster Through the Transport Client
	4.4.4 Using Spring Boot to Access a Cluster

	4.5 Accessing a Cluster Using Python
	4.6 Using ES-Hadoop to Read and Write Data in Elasticsearch Through Hive
	4.7 Accessing a Cluster Using Go

	5 Cluster Performance Tuning
	5.1 Optimizing Write Performance
	5.2 Optimizing Query Performance

	6 Managing the Index Lifecycle
	6.1 Configuring the Lifecycle to Automate Index Rollover
	6.2 Configuring the Lifecycle to Decouple Storage and Compute

	7 Practices
	7.1 Using CSS to Accelerate Database Query and Analysis
	7.2 Using CSS to Build a Unified Log Management Platform
	7.3 Configuring Query Scoring in an Elasticsearch Cluster

